| Citation: | ZHU Xu-wei, TIAN Bo, QUAN Lei, LI Li-hui, LI Si-li, ZHANG Pan-pan, HE Zhe. Thawing behavior of frozen soil with high ice content under the action of high-power heating rod[J]. Journal of Traffic and Transportation Engineering, 2025, 25(4): 58-70. doi: 10.19818/j.cnki.1671-1637.2025.04.004 |
| [1] |
LIEW M, JI X H, XIAO M, et al. Synthesis of physical processes of permafrost degradation and geophysical and geomechanical properties of permafrost[J]. Cold Regions Science and Technology, 2022, 198: 103522. doi: 10.1016/j.coldregions.2022.103522
|
| [2] |
SUN Z H, LIU J K, HU T F, et al. A solar compression refrigeration apparatus to cool permafrost embankment[J]. Applied Thermal Engineering, 2023, 223: 120034. doi: 10.1016/j.applthermaleng.2023.120034
|
| [3] |
HAO Jia-qian, JI Yan-jun, HE Nai-wu, et al. Techniques for prethawing permafrost: review and prospect[J]. Journal of Glaciology and Geocryology, 2007, 29(4): 645-652.
|
| [4] |
WANG Shuang-jie, WANG Zuo, YUAN Kun, et al. Qinghai-Tibet highway engineering geology in permafrost regions: review and prospect[J]. China Journal of Highway and Transport, 2015, 28(12): 1-8, 32.
|
| [5] |
YAN Z R, ZHANG M Y, LAI Y M, et al. Countermeasures combined with thermosyphons against the thermal instability of high-grade highways in permafrost regions[J]. International Journal of Heat and Mass Transfer, 2020, 153: 119047. doi: 10.1016/j.ijheatmasstransfer.2019.119047
|
| [6] |
JIN Long, WANG Shuang-jie, MU Ke, et al. Cooling effect of thermosyphon subgrade for Qinghai-Tibet Highway[J]. Journal of Traffic and Transportation Engineering, 2016, 16(4): 45-58.
|
| [7] |
TAI B W, WU Q B, ZHANG Z Q, et al. Cooling performance and deformation behavior of crushed-rock embankments on the Qinghai-Tibet railway in permafrost regions[J]. Engineering Geology, 2020, 265: 105453. doi: 10.1016/j.enggeo.2019.105453
|
| [8] |
JIN M Y, SHANG K, YU Q H, et al. Study on working performance and cooling effect of a novel horizontal thermosyphon applied to expressway embankment in permafrost regions[J]. Cold Regions Science and Technology, 2024, 221: 104147. doi: 10.1016/j.coldregions.2024.104147
|
| [9] |
XU K M, JIANG G L, CHEN J, et al. Thermal stability of permafrost under U-shaped crushed rock embankment of the Qinghai-Tibet Railway[J]. Advances in Climate Change Research, 2024, 15(1): 158-169. doi: 10.1016/j.accre.2023.12.005
|
| [10] |
HUANG Y H, NIU F J, CHEN J B, et al. Express highway embankment distress and occurring probability in permafrost regions on the Qinghai-Tibet Plateau[J]. Transportation Geotechnics, 2023, 42: 101069. doi: 10.1016/j.trgeo.2023.101069
|
| [11] |
CHAI M T, MU Y H, ZHANG J M, et al. Characteristics of asphalt pavement damage in degrading permafrost regions: case study of the Qinghai-Tibet highway, China[J]. Journal of Cold Regions Engineering, 2018, 32(2): 05018003. doi: 10.1061/(ASCE)CR.1943-5495.0000165
|
| [12] |
YU W B, ZHANG T Q, LU Y, et al. Engineering risk analysis in cold regions: state of the art and perspectives[J]. Cold Regions Science and Technology, 2020, 171: 102963. doi: 10.1016/j.coldregions.2019.102963
|
| [13] |
YUAN C, YU Q H, YOU Y H, et al. Deformation mechanism of an expressway embankment in warm and high ice content permafrost regions[J]. Applied Thermal Engineering, 2017, 121: 1032-1039. doi: 10.1016/j.applthermaleng.2017.04.128
|
| [14] |
BAO Wei-xing, LIU Ya-lun, MAO Xue-song, et al. Characteristics of subgrade temperature field of gravel road in high altitude permafrost region[J]. Journal of Traffic and Transportation Engineering, 2023, 23(4): 60-74. doi: 10.19818/j.cnki.1671-1637.2023.04.004
|
| [15] |
CUI P, GE Y B, LI S J, et al. Scientific challenges in disaster risk reduction for the Sichuan-Tibet railway[J]. Engineering Geology, 2022, 309: 106837. doi: 10.1016/j.enggeo.2022.106837
|
| [16] |
MEI Q H, CHEN J, LIU Y Q, et al. Degradation of warm permafrost and talik formation on the Qinghai-Tibet Plateau in 2006-2021[J]. Advances in Climate Change Research, 2024, 15(2): 275-284. doi: 10.1016/j.accre.2024.03.009
|
| [17] |
HJORT J, STRELETSKIY D, DORÉ G, et al. Impacts of permafrost degradation on infrastructure[J]. Nature Reviews Earth and Environment, 2022, 3: 24-38. doi: 10.1038/s43017-021-00247-8
|
| [18] |
CYSEWSKI M H, SHUR Y. Pre-thawing: from mining to civil engineering; A historical perspective, cold regions impacts on research, design, and construction[C]//ASCE. Cold Regions Engineering 2009. Reston: ASCE, 2009: 22-31.
|
| [19] |
SVEEN S E, NGUYEN H T, SØRENSEN B R. Thaw penetration in frozen ground subjected to hydronic heating[J]. Journal of Cold Regions Engineering, 2017, 31(1): 04016008. doi: 10.1061/(ASCE)CR.1943-5495.0000117
|
| [20] |
SVEEN S E, NGUYEN H T, SØRENSEN B R. Soil moisture variations in frozen ground subjected to hydronic heating[J]. Journal of Cold Regions Engineering, 2020, 34(4): 04020025. doi: 10.1061/(ASCE)CR.1943-5495.0000231
|
| [21] |
JIA H L, WANG T, CHEN W H, et al. Microscopic mechanisms of microwave irradiation thawing frozen soil and potential application in excavation of frozen ground[J]. Cold Regions Science and Technology, 2021, 184: 103248. doi: 10.1016/j.coldregions.2021.103248
|
| [22] |
LIU W B, CHEN L, YU W B, et al. Experimental study on thermal performance of quicklime (CaO) energy pile aimed to thaw the warm permafrost ground[J]. Applied Thermal Engineering, 2019, 156: 189-195. doi: 10.1016/j.applthermaleng.2019.04.056
|
| [23] |
ZHU X W, TIAN B, QUAN L, et al. Thawing process of high-ice-content frozen soil subjected to saturated steam[J]. Applied Thermal Engineering, 2024, 247: 123122. doi: 10.1016/j.applthermaleng.2024.123122
|
| [24] |
HERMANSSON Å, GUTHRIE W S. Numerical modeling of thaw penetration in frozen ground subject to low-intensity infrared heating[J]. Journal of Cold Regions Engineering, 2006, 20(1): 4-19. doi: 10.1061/(ASCE)0887-381X(2006)20:1(4)
|
| [25] |
OSWELL J M, GRAHAM M D. Thawing frozen ground: feld trials and analysis[J]. Journal of Cold Regions Engineering, 1987, 1(2): 76-88. doi: 10.1061/(ASCE)0887-381X(1987)1:2(76)
|
| [26] |
YOSHIKAWA K, OVERDUIN P P. Comparing unfrozen water content measurements of frozen soil using recently developed commercial sensors[J]. Cold Regions Science and Technology, 2005, 42(3): 250-256. doi: 10.1016/j.coldregions.2005.03.001
|
| [27] |
ZHANG D, LI X, LI X K, et al. Experimental study on the influence of initial water saturation on segregation frost-heaving behavior in silty clay columns[J]. Applied Thermal Engineering, 2023, 234: 121236. doi: 10.1016/j.applthermaleng.2023.121236
|
| [28] |
LI Shun-qun, WANG Xing-xing, XIA Jin-hong, et al. Test methods for specific heat capacity of frozen soil based on principles of mixing calorimetry[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1684-1689.
|
| [29] |
HINKEL K M, OUTCALT S I. Detection of heat-mass transfer regime transitions in the active layer using fractal geometric parameters[J]. Cold Regions Science and Technology, 1995, 23(4): 293-304. doi: 10.1016/0165-232X(95)00003-T
|
| [30] |
LIU Hong-ping, LI Hao, WEI Jin, et al. Water migration characteristics of highway subgrade in seasonal frozen areas considering fine particle content[J]. Journal of Chang'an University (Natural Science Edition), 2024, 44(4): 27-37.
|
| [31] |
QUAN Lei, TIAN Bo, NIU Kai-min, et al. Temperature variation properties of pavements and subgrades for high-grade roads on Qinghai-Tibet Plateau[J]. Journal of Traffic and Transportation Engineering, 2017, 17(2): 21-30. https://transport.chd.edu.cn/article/id/201702003
|
| [32] |
WANG Qing-zhi, FANG Jian-hong, CHAO Gang. Analysis of cooling effect of block-stone expressway embankment in warm temperature permafrost region[J]. Rock and Soil Mechanics, 2020, 41(1): 305-314.
|
| [33] |
TIAN Bo, WANG Hao-wu, QUAN Lei, et al. Risk assessment on surface deformation in permafrost area based on CPT test[J]. Journal of Highway and Transportation Research and Development, 20, 40(9): 1-7, 53.
|