| Citation: | ZHAO Hong-xing, WANG Yu-jie, NIE Jiang-long, LIANG Rui-yan, HE Rui-chun. Deep reinforcement learning signal continuous control of intersection based on cellular deduction multi-step decision mechanism[J]. Journal of Traffic and Transportation Engineering, 2025, 25(4): 296-310. doi: 10.19818/j.cnki.1671-1637.2025.04.021 |
| [1] |
ZHANG Li-li, WANG Li, ZHANG Ling-yu. Urban road traffic control overview and prospect[J]. Science Technology and Engineering, 2020, 20(16): 6322-6329.
|
| [2] |
MIKAMI S, KAKAZU Y. Genetic reinforcement learning for cooperative traffic signal control[C]// IEEE. Proceedings of the First IEEE Conference on Evolutionary Computation. New York: IEEE, 2002: 223-228.
|
| [3] |
LIU Quan, ZHAI Jian-wei, ZHANG Zong-chang, et al. A survey on deep reinforcement learning[J]. Chinese Journal of Computers, 2018, 41(1): 1-27.
|
| [4] |
LI L, LV Y S, WANG F Y. Traffic signal timing via deep reinforcement learning[J]. IEEE/CAA Journal of Automati-ca Sinica, 2016, 3(3): 247-254. doi: 10.1109/JAS.2016.7508798
|
| [5] |
DUCROCQ R, FARHI N. Deep reinforcement Q-learning for intelligent traffic signal control with partial detection[J]. International Journal of Intelligent Transportation Systems Research, 2023, 21(1): 192-206. doi: 10.1007/s13177-023-00346-4
|
| [6] |
YU J J, LAHAROTTE P A, HAN Y, et al. Decentralized signal control for multi-modal traffic network: A deep rein-forcement learning approach[J]. Transportation Research Part C: Emerging Technologies, 2023, 154: 104281. doi: 10.1016/j.trc.2023.104281
|
| [7] |
YE B L, CHEN D, WU P, et al. A traffic signal control method based on improved deep reinforcement learning[C]// IEEE. 2024 China Automation Congress (CAC). New York: IEEE, 2024: 5959-5964.
|
| [8] |
MA C L, WANG B, LI Z H, et al. Lyapunov function consistent adaptive network signal control with back pressure and reinforcement learning[J/OL]. arXiv, 2022,
|
| [9] |
KANG L L, HUANG H, LU W K, et al. A dueling deep Q-Network method for low-carbon traffic signal control[J]. Applied Soft Computing, 2023, 141: 110304. doi: 10.1016/j.asoc.2023.110304
|
| [10] |
LIANG X Y, DU X S, WANG G L, et al. A deep reinfor-cement learning network for traffic light cycle control[J]. IEEE Transactions on Vehicular Technology, 2019, 68(2): 1243-1253. doi: 10.1109/TVT.2018.2890726
|
| [11] |
CAO K R, WANG L W, ZHANG S, et al. Optimization control of adaptive traffic signal with deep reinforcement learning[J]. Electronics, 2024, 13(1): 198. doi: 10.3390/electronics13010198
|
| [12] |
RIZZO S G, VANTINI G, CHAWLA S. Time critic policy gradient methods for traffic signal control in complex and congested scenarios[C]//TEREDESAI A, KUMAR V. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2019: 1654-1664.
|
| [13] |
MOUSAVI S S, SCHUKAT M, HOWLEY E. Traffic light control using deep policy-gradient and value-function-based reinforcement learning[J]. IET Intelligent Transport Sys-tems, 2017, 11(7): 417-423. doi: 10.1049/iet-its.2017.0153
|
| [14] |
YANG S T, YANG B, WONG H S, et al. Cooperative tra-ffic signal control using multi-step return and off-policy asynchronous advantage actor-critic graph algorithm[J]. Knowledge-based Systems, 2019, 183: 104855. doi: 10.1016/j.knosys.2019.07.026
|
| [15] |
ASLANI M, MESGARI M S, SEIPEL S, et al. Developing adaptive traffic signal control by actor-critic and direct ex-ploration methods[J]. Proceedings of the Institution of Civil Engineers—Transport, 2019, 172(5): 289-298. doi: 10.1680/jtran.17.00085
|
| [16] |
PANG H L, GAO W L. Deep deterministic policy gradient for traffic signal control of single intersection[C]//IEEE. 2019 Chinese Control and Decision Conference (CCDC). New York: IEEE, 2019: 5861-5866.
|
| [17] |
ADJIE A P, IDHAM ANANTA TIMUR M. Comparison of DQN and DDPG learning algorithm for intelligent traffic signal controller in semarang road network simulation[C]//IEEE. 2023 11th International Conference on Information and Communication Technology (ICoICT). New York: IEEE, 2023: 1-5.
|
| [18] |
HAN G Y, LIU X H, WANG H, et al. An attention rein-forcement learning-based strategy for large-scale adaptive traffic signal control system[J]. Journal of Transportation Engineering, Part A: Systems, 2024, 150(3): 04024001. doi: 10.1061/JTEPBS.TEENG-8261
|
| [19] |
LI C H, MA X T, XIA L, et al. Fairness control of traffic light via deep reinforcement learning[C]//IEEE. 2020 IEEE 16th International Conference on Automation Science and En-gineering (CASE). New York: IEEE, 2020: 652-658.
|
| [20] |
KOCH L, BRINKMANN T, WEGENER M, et al. Adap-tive traffic light control with deep reinforcement learning: An evaluation of traffic flow and energy consumption[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(12): 15066-15076. doi: 10.1109/TITS.2023.3305548
|
| [21] |
HUANG L B, QU X H. Improving traffic signal control operations using proximal policy optimization[J]. IET Intelli-gent Transport Systems, 2023, 17(3): 592-605. doi: 10.1049/itr2.12286
|
| [22] |
MAO F, LI Z H, LIN Y L, et al. Mastering arterial traffic signal control with multi-agent attention-based soft actor-cri-tic model[J]. IEEE Transactions on Intelligent Transporta-tion Systems, 2023, 24(3): 3129-3144. doi: 10.1109/TITS.2022.3229477
|
| [23] |
QIAO Zhi-min, KE Liang-jun. Traffic signal control based on deep reinforcement learning[J]. Control Theory & Applica-tions, 2025, 42(1): 76-86.
|
| [24] |
FANG S, CHEN F, LIU H C. Dueling double deep Q-net-work for adaptive traffic signal control with low exhaust emissions in a single intersection[J]. IOP Conference Series: Materials Science and Engineering, 2019, 612(5): 052039. doi: 10.1088/1757-899X/612/5/052039
|
| [25] |
COGGIN J J. Attention mechanism based deep reinforcement learning for traffic signal control[J]. Application Research of Computers, 2023, 40(2): 430-434.
|
| [26] |
LU Li-ping, CHENG Ken, CHU Duan-feng, et al. Adaptive traffic signal control based on dueling recurrent double Q network[J]. China Journal of Highway and Transport, 2022, 35(8): 267-277.
|
| [27] |
ZHAO Z N, WANG K, WANG Y, et al. Enhancing traffic signal control with composite deep intelligence[J]. Expert Systems with Applications, 2024, 244: 123020. doi: 10.1016/j.eswa.2023.123020
|
| [28] |
KUMAR N, RAHMAN S S, DHAKAD N. Fuzzy inference enabled deep reinforcement learning-based traffic light control for intelligent transportation system[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(8): 4919-4928. doi: 10.1109/TITS.2020.2984033
|
| [29] |
XU M, WU J P, HUANG L, et al. Network-wide traffic signal control based on the discovery of critical nodes and deep reinforcement learning[J]. Journal of Intelligent Transporta-tion Systems, 2020, 24(1): 1-10. doi: 10.1080/15472450.2018.1527694
|
| [30] |
WAN C H, HWANG M C. Value-based deep reinforcement learning for adaptive isolated intersection signal control[J]. IET Intelligent Transport Systems, 2018, 12(9): 1005-1010. doi: 10.1049/iet-its.2018.5170
|
| [31] |
TAN K L, SHARMA A, SARKAR S. Robust deep reinfor-cement learning for traffic signal control[J]. Journal of Big Data Analytics in Transportation, 2020, 2(3): 263-274. doi: 10.1007/s42421-020-00029-6
|
| [32] |
BOUKTIF S, CHENIKI A, OUNI A, et al. Deep reinforce-ment learning for traffic signal control with consistent state and reward design approach[J]. Knowledge-based Systems, 2023, 267: 110440. doi: 10.1016/j.knosys.2023.110440
|
| [33] |
TOUHBI S, BABRAM M A, NGUYEN-HUU T, et al. Adaptive traffic signal control: Exploring reward definition for reinfor-cement learning[J]. Procedia Computer Science, 2017, 109: 513-520. doi: 10.1016/j.procs.2017.05.327
|
| [34] |
LI Z N, YU H, ZHANG G H, et al. Network-wide traffic signal control optimization using a multi-agent deep reinfor-cement learning[J]. Transportation Research Part C: Emerg-ing Technologies, 2021, 125: 103059. doi: 10.1016/j.trc.2021.103059
|
| [35] |
LIU Zhi-min, YE Bao-lin, ZHU Yao-dong, et al. Traffic sig-nal control method based on deep reinforcement learning[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(6): 1249-1256.
|
| [36] |
LI Shan, REN An-hu, BAI Jing-jing. Research on timing of signal light at countdown intersection based on DQN algori-thm[J]. Foreign Electronic Measurement Technology, 2021, 40(10): 91-97.
|
| [37] |
DAGANZO C F. The cell transmission model: A dynamic re-presentation of highway traffic consistent with the hydro-dynamic theory[J]. Transportation Research Part B: Metho-dological, 1994, 28(4): 269-287. doi: 10.1016/0191-2615(94)90002-7
|
| [38] |
DAGANZO C F. The cell transmission model, Part Ⅱ: Net-work traffic[J]. Transportation Research Part B: Metho-dological, 1995, 29(2): 79-93. doi: 10.1016/0191-2615(94)00022-R
|
| [39] |
YE L H, YAMAMOTO T. Modeling connected and auto-nomous vehicles in heterogeneous traffic flow[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 490: 269-277. doi: 10.1016/j.physa.2017.08.015
|
| [40] |
MOHEBIFARD R, BIN AL ISLAM S M A, HAJBABAIE A. Cooperative traffic signal and perimeter control in semi-connected urban-street networks[J]. Transportation Resear-ch Part C: Emerging Technologies, 2019, 104: 408-427. doi: 10.1016/j.trc.2019.05.023
|
| [41] |
BIN AL ISLAM S M A, HAJBABAIE A, ABDUL AZIZ H M. A real-time network-level traffic signal control metho-dology with partial connected vehicle information[J]. Tran-sportation Research Part C: Emerging Technologies, 2020, 121: 102830. doi: 10.1016/j.trc.2020.102830
|
| [42] |
YU Shao-wei, SHI Zhong-ke. Car-following model on vehi-cles arrival during the red phase[J]. China Journal of High-way and Transport, 2014, 27(11): 93-100.
|
| [43] |
WANG Fu-jian, FAN Cheng-rui, ZHOU Bin, et al. Traffic signal decentralized reinforcement learning method based on a multi-perspective spatio-temporal hierarchical structure[J]. China Journal of Highway and Transport, 2024, 37(7): 250-263.
|