| Citation: | WANG Chao, ZHANG Ze-hui, FAN Na, LUO Chuang, MU Ding, ZHANG Meng-yao. Privacy-preserving mechanism for trajectory data publishing based on deep generative models[J]. Journal of Traffic and Transportation Engineering, 2025, 25(4): 340-354. doi: 10.19818/j.cnki.1671-1637.2025.04.024 |
| [1] |
WANG W, WANG Y, DUAN P, et al. A triple real-time trajectory privacy protection mechanism based on edge computing and blockchain in mobile crowdsourcing[J]. IEEE Transactions on Mobile Computing, 2022, 22(10): 5625-5642.
|
| [2] |
ZHAO Y, CHEN J. Vector-indistinguishability: location dependency based privacy protection for successive location data[J]. IEEE Transactions on Computers, 2023, 73(4): 970-979.
|
| [3] |
XING L, LI B, LIU L, et al. Trajectory privacy protection method based on sensitive semantic location replacement[J]. Computer Networks, 2024, 250: 1-10.
|
| [4] |
JIN F, HUA W, FRANCIA M, et al. A survey and experimental study on privacy-preserving trajectory data publishing[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 35(6): 5577-5596.
|
| [5] |
XI J, SHI M, ZHANG W, et al. Trajectory privacy-protection mechanism based on multidimensional spatial-temporal prediction[J]. Symmetry, 2024, 16(9): 1-16.
|
| [6] |
HU P, CHU X, ZUO K, et al. Security-enhanced data sharing scheme with location privacy preservation for internet of vehicles[J]. IEEE Transactions on Vehicular Technology, 2024, 73(9): 13751-13764. doi: 10.1109/TVT.2024.3393302
|
| [7] |
JIANG Wei-jin, WANG Hai-juan, ZHOU Wei, et al. Track privacy protection scheme based on adaptive continuous time in crowdsensing[J]. Chinese Journal of Electronics, 2023, 51(10): 2894-2901.
|
| [8] |
SCHESTAKOV S, GOTTSCHALK S, FUNKE T, et al. RE-Trace: Re-identification of modified GPS trajectories[J]. ACM Transactions on Spatial Algorithms and Systems, 2024, 10(4): 1-28.
|
| [9] |
GRAMAGLIA M, FIORE M, FURNO A, et al. GLOVE: Towards privacy-preserving publishing of record-level-truthful mobile phone trajectories[J]. ACM/IMS Transactions on Data Science (TDS), 2021, 2(3): 1-36.
|
| [10] |
SHEN H, WANG Y, ZHANG M. A privacy-preserving trajectory publishing method based on multi-dimensional sub-trajectory similarities[J]. Sensors, 2023, 23(24): 1-22. doi: 10.1109/JSEN.2023.3338435
|
| [11] |
WU W, SHANG W, LEI R, et al. A trajectory privacy protect method based on location pair reorganization[J]. Wireless Communications and Mobile Computing, 2022, 2022(1): 1-16.
|
| [12] |
QIU S, PI D, WANG Y, et al. Novel trajectory privacy protection method against prediction attacks[J]. Expert Systems with Applications, 2023, 213: 1-14.
|
| [13] |
GAO Z, HUANG Y, ZHENG L, et al. Protecting location privacy of users based on trajectory obfuscation in mobile crowdsensing[J]. IEEE Transactions on Industrial Informatics, 2022, 18(9): 6290-6299.
|
| [14] |
WANG H, ZHANG Z, WANG T, et al. PrivTrace: differentially private trajectory synthesis by adaptive markov models[C]//USENIX Association. 32nd USENIX Security Symposium (USENIX Security 23). Anaheim: USENIX, 2023: 1649-1666.
|
| [15] |
CHENG W, WEN R, HUANG H, et al. OPTDP: towards optimal personalized trajectory differential privacy for trajectory data publishing[J]. Neurocomputing, 2022, 472: 201-211.
|
| [16] |
GU Z, ZHANG G. Trajectory data publication based on differential privacy[J]. International Journal of Information Security and Privacy, 2023, 17(1): 1-15.
|
| [17] |
XU C, ZHU L, LIU Y, et al. DP-LTOD: differential privacy latent trajectory community discovering services over location-based social networks[J]. IEEE Transactions on Services Computing, 2018, 14(4): 1068-1083.
|
| [18] |
WU L, QIN C, XU Z, et al. TCPP: achieving privacy-preserving trajectory correlation with differential privacy[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 4006-4020.
|
| [19] |
CHEN Si, FU An-min, SU Mang, et al. Trajectory privacy protection scheme based on differential privacy[J]. Journal of Communications, 2021, 42(9): 54-64.
|
| [20] |
ZHU Su-xia, LIU Shu-lun, SUN Guang-lu, et al. Shape similarity differential privacy trajectory protection mechanism based on relative entropy and K-means[J]. Journal of Communications, 2021, 42(2): 113-123.
|
| [21] |
YAO Jun-feng, HE Rui, SHI Tong-tong, et al. Review on machine learning-baed traffic flow prediction methods[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 44-67. doi: 10.19818/j.cnki.1671-1637.2023.03.003
|
| [22] |
YE A-yong, MENG Ling-yu, ZHAO Zi-wen, et al. Trajectory differential privacy protection mechanism based on prediction and sliding window[J]. Journal of Communications, 2020, 41(4): 123-133.
|
| [23] |
YOU Lin-lin, HE Jun-shu, CHEN Kun-xu, et al. Federated heterogeneous model and algorithm for personal travel recommendation[J]. Journal of Traffic and Transportation Engineering, 2023, 23(5): 253-263. doi: 10.19818/j.cnki.1671-1637.2023.05.018
|
| [24] |
CUI Jian-xun, YAO Jia, ZHAO Po-yuan. Review on short-term traffic flow prediction methods based on deep learning[J]. Journal of Traffic and Transportation Engineering, 2024, 24(2): 50-64. doi: 10.19818/j.cnki.1671-1637.2024.02.003
|
| [25] |
CHOI S, KIM J, YEO H. TrajGAIL: generating urban vehicle trajectories using generative adversarial imitation learning[J]. Transportation Research Part C: Emerging Technologies, 2021, 128: 1-25.
|
| [26] |
CHEN X, XU J, ZHOU R, et al. TrajVAE: a variational AutoEncoder model for trajectory generation[J]. Neurocomputing, 2021, 428: 332-339.
|
| [27] |
HU J, HE J, ZHU N, et al. Trajectory privacy preservation model based on LSTM-DCGAN[J]. Future Generation Computer Systems, 2025, 163: 1-13.
|
| [28] |
JIANG Y, WU Y, ZHANG S, et al. Fedvae: trajectory privacy preserving based on federated variational autoencoder[C]//IEEE. 2023 IEEE 98th Vehicular Technology Conference (VTC2023-Fall). New York: IEEE, 2023: 1-7.
|
| [29] |
WANG X, LIU X, LU Z, et al. Large scale GPS trajectory generation using map based on two stage GAN[J]. Journal of Data Science, 2021, 19(1): 126-141.
|
| [30] |
CAO C, LI M. Generating mobility trajectories with retained data utility[C]//ACM. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. New York: ACM, 2021: 2610-2620.
|
| [31] |
SHIN J, SONG Y, AHN J, et al. TCAC-GAN: synthetic trajectory generation model using auxiliary classifier generative adversarial networks for improved protection of trajectory data[C]//IEEE. 2023 IEEE International Conference on Big Data and Smart Computing (BigComp). New York: IEEE, 2023: 314-315.
|
| [32] |
CAO X, YU J, HAN J, et al. A transformer decoder-based generative adversarial model with trajloss function for privacy-preserving trajectory publishing[C]//ACM. Proceedings of the 2022 5th International Conference on Machine Learning and Natural Language Processing. New York: ACM, 2022: 271-278.
|
| [33] |
ZHANG J, HUANG Q, HUANG Y, et al. DP-TrajGAN: a privacy-aware trajectory generation model with differential privacy[J]. Future Generation Computer Systems, 2023, 142: 25-40.
|
| [34] |
SUN X, WO T. A privacy-preserving and research-utilizable trajectory generator via deep generative approach[C]//IEEE. 2023 6th International Conference on Electronics Technology (ICET). New York: IEEE, 2023: 1017-1021.
|
| [35] |
KIM J W, JANG B. Deep learning-based privacy-preserving framework for synthetic trajectory generation[J]. Journal of Network and Computer Applications, 2022, 206: 1-10.
|