| Citation: | RAN Mao-ping, DENG Xu-hong, GUAN Jia-xi, XIAO Shen-qing, JIANG Rui-qie, ZHOU Xing-lin. Review on road infrastructure carbon emission accounting and low-carbon reduction technologies based on LCA[J]. Journal of Traffic and Transportation Engineering, 2025, 25(5): 23-37. doi: 10.19818/j.cnki.1671-1637.2025.05.002 |
| [1] |
LIU Xi-duo, FENG Shun-tian, LIU Xiao-xiao, et al. 2022 digital roads white paper[R]. Xiong'an: China Telecom Digital City Research Institute, 2022.
|
| [2] |
CHEN Tao, LI Xiao-yang, CHEN Bin. Decoupling effect and peak prediction of carbon emission in transportation industry under dual-carbon target[J]. Journal of Traffic and Transportation Engineering, 2024, 24(4): 104-116. doi: 10.19818/j.cnki.1671-1637.2024.04.008
|
| [3] |
QIU Jian-dong, XU Xiang, QU Xin-ming, et al. Method for accounting urban on-road mobile source carbon emissions[J]. Urban Transport of China, 2023, 21(4): 77-86.
|
| [4] |
HE Qing, LI Ye, ZHANG Xin. Quantitative analysis framework of road system life-cycle carbon emissions under international standards[J]. Urban Transport of China, 2022, 20(1): 102-109, 43.
|
| [5] |
LU Jiao, FANG Xiang-chen, LI Yuan-sheng, et al. Carbon footprint of paving asphalt[J]. Modern Chemical Industry, 2016, 36(1): 12-16.
|
| [6] |
VEGA A D L, SANTOS J, MARTINEZ-ARGUELLES G. Life cycle assessment of hot mix asphalt with recycled concrete aggregates for road pavements construction[J]. International Journal of Pavement Engineering, 2022, 23(4): 923-936. doi: 10.1080/10298436.2020.1778694
|
| [7] |
CHONG D, WANG Y H. Impacts of flexible pavement design and management decisions on life cycle energy consumption and carbon footprint[J]. The International Journal of Life Cycle Assessment, 2017, 22(6): 952-971. doi: 10.1007/s11367-016-1202-x
|
| [8] |
JIA X L, QIN X F, ZHU J Y, et al. Carbon emission pattern of driving car on vertical curves of highway[J]. Sustainability, 2023, 15(8): 6460. doi: 10.3390/su15086460
|
| [9] |
ALAM M R, HOSSAIN K, BUTT A A, et al. Life cycle assessment of asphalt pavement maintenance and rehabilitation techniques: A study for the City of St. John's[J]. Canadian Journal of Civil Engineering, 2020, 47(12): 1320-1326. doi: 10.1139/cjce-2019-0540
|
| [10] |
MA F, DONG W H, FU Z, et al. Life cycle assessment of greenhouse gas emissions from asphalt pavement maintenance: A case study in China[J]. Journal of Cleaner Production, 2021, 288: 125595. doi: 10.1016/j.jclepro.2020.125595
|
| [11] |
XIE J, WANG Z H, WANG F S, et al. The life cycle energy consumption and emissions of asphalt pavement incorporating basic oxygen furnace slag by comparative study[J]. Sustainability, 2021, 13(8): 4540. doi: 10.3390/su13084540
|
| [12] |
ALAM S, KUMAR A, DAWES L. Roughness optimization of road networks: An option for carbon emission reduction by 2030[J]. Journal of Transportation Engineering, Part B: Pavements, 2020, 146(4): 04020062. doi: 10.1061/JPEODX.0000203
|
| [13] |
HUANG Y Q, WOLFRAM P, MILLER R, et al. Mitigating life cycle GHG emissions of roads to be built through 2030: Case study of a Chinese province[J]. Journal of Environmental Management, 2022, 319: 115512. doi: 10.1016/j.jenvman.2022.115512
|
| [14] |
WEI Zhi-ling. Preventive maintenance measures for highway asphalt pavement[J]. Theoretical Research in Urban Construction, 2024, 3: 148-150.
|
| [15] |
SHI J C, GONG H R, CONG L, et al. Evaluating and quantifying segregation in asphalt pavement construction: A state-of-the-practice survey[J]. Construction and Building Materials, 2023, 383: 131205. doi: 10.1016/j.conbuildmat.2023.131205
|
| [16] |
XIE Chao, WANG Si-si, LV Bin. Environmental impact analysis of permeable cement concrete pavement in Beijing based on life cycle assessment[J]. Environmental Engineering, 2022, 40(9): 118-125.
|
| [17] |
BI Ya-jun. Environmental evaluation of Chinese clean coal-fired power systems using life cycle assessment[D]. Wuhan: Huazhong University of Science & Technology, 2020.
|
| [18] |
WANG Chang-bo, ZHANG Li-xiao, PANG Ming-yue. A review on hybrid life cycle assessment: Development and application[J]. Journal of Natural Resources, 2015, 30(7): 1232-1242.
|
| [19] |
ISLAM S, PONNAMBALAM S G, LAM H L. Review on life cycle inventory: Methods, examples and applications[J]. Journal of Cleaner Production, 2016, 136: 266-278. doi: 10.1016/j.jclepro.2016.05.144
|
| [20] |
CONG P L, DU R Y, GAO H L, et al. Comparison and assessment of carbon dioxide emissions between alkali-activated materials and OPC cement concrete[J]. Journal of Traffic and Transportation Engineering (English Edition), 2024, 11(5): 918-938. doi: 10.1016/j.jtte.2023.07.011
|
| [21] |
CRAWFORD R H, BONTINCK P A, STEPHAN A, et al. Hybrid life cycle inventory methods-A review[J]. Journal of Cleaner Production, 2018, 172: 1273-1288. doi: 10.1016/j.jclepro.2017.10.176
|
| [22] |
SANTOS J, BRYCE J, FLINTSCH G, et al. A life cycle assessment of in-place recycling and conventional pavement construction and maintenance practices[J]. Structure and Infrastructure Engineering, 2015, 11(9): 1199-1217. doi: 10.1080/15732479.2014.945095
|
| [23] |
LOIJOS A, SANTERO N, OCHSENDORF J. Life cycle climate impacts of the US concrete pavement network[J]. Resources, Conservation and Recycling, 2013, 72: 76-83. doi: 10.1016/j.resconrec.2012.12.014
|
| [24] |
MUENCH S T. Roadway construction sustainability impacts[J]. Transportation Research Record: Journal of the Transportation Research Board, 2010(2151): 36-45.
|
| [25] |
JULLIEN A, DAUVERGNE M, PROUST C. Road LCA: The dedicated ECORCE tool and database[J]. The International Journal of Life Cycle Assessment, 2015, 20(5): 655-670. doi: 10.1007/s11367-015-0858-y
|
| [26] |
HUANG Y, HAKIM B, ZAMMATARO S. Measuring the carbon footprint of road construction using CHANGER[J]. International Journal of Pavement Engineering, 2013, 14(6): 590-600. doi: 10.1080/10298436.2012.693180
|
| [27] |
MUENCH S T, LIN Y Y, KATARA S, et al. Roadprint: Practical pavement life cycle assessment (LCA) using generally available data[J]. Transportation Research Record: Journal of the Transportation Research Board, 2022(2676): 298-311.
|
| [28] |
HUANG Y, SPRAY A, PARRY T. Sensitivity analysis of methodological choices in road pavement LCA[J]. The International Journal of Life Cycle Assessment, 2013, 18(1): 93-101. doi: 10.1007/s11367-012-0450-7
|
| [29] |
MUKHERJEE A, SATTAW W B, CASS D. Project emission estimator: Tools for constructors and agencies for assessing greenhouse gas emissions of highway construction projects[J]. Transportation Research Record: Journal of the Transportation Research Board, 2013(2366): 57-65.
|
| [30] |
LIU N, WANG Y Q, BAI Q, et al. Road life-cycle carbon dioxide emissions and emission reduction technologies: A review[J]. Journal of Traffic and Transportation Engineering: English Edition, 2022, 9(4): 532-555. doi: 10.1016/j.jtte.2022.06.001
|
| [31] |
MAO R C, DUAN H B, DONG D, et al. Quantification of carbon footprint of urban roads via life cycle assessment: Case study of a megacity-Shenzhen, China[J]. Journal of Cleaner Production, 2017, 166: 40-48. doi: 10.1016/j.jclepro.2017.07.173
|
| [32] |
HUANG Shan-qian, HUANG Xue-wen, GAO Shuo-han, et al. Carbon emission calculation of whole expressway construction phase based on LCA theory[J]. Transport Research, 2022, 8(6): 72-80, 89.
|
| [33] |
HAN Zi-yang. Carbon footprint of expressway bridges in life cycle[D]. Nanchang: Nanchang Institute of Technology, 2023.
|
| [34] |
CHOWDHURY R, APUL D, FRY T. A life cycle based environmental impacts assessment of construction materials used in road construction[J]. Resources, Conservation and Recycling, 2010, 54(4): 250-255. doi: 10.1016/j.resconrec.2009.08.007
|
| [35] |
SANTOS J, FERREIRA A, FLINTSCH G. A life cycle assessment model for pavement management: Road pavement construction and management in Portugal[J]. International Journal of Pavement Engineering, 2015, 16(4): 315-336. doi: 10.1080/10298436.2014.942862
|
| [36] |
KANG S, YANG R, OZER H, et al. Life-cycle greenhouse gases and energy consumption for material and construction phases of pavement with traffic delay[J]. Transportation Research Record: Journal of the Transportation Research Board, 2014(2428): 27-34.
|
| [37] |
WANG F S, XIE J, WU S P, et al. Life cycle energy consumption by roads and associated interpretative analysis of sustainable policies[J]. Renewable and Sustainable Energy Reviews, 2021, 141: 110823. doi: 10.1016/j.rser.2021.110823
|
| [38] |
LI D, WANG Y Q, LIU Y Y, et al. Estimating life-cycle CO2 emissions of urban road corridor construction: A case study in Xi'an, China[J]. Journal of Cleaner Production, 2020, 255: 120033. doi: 10.1016/j.jclepro.2020.120033
|
| [39] |
PICARDO A, GALVáN M J, SOLTERO V M, et al. A comparative life cycle assessment and costing of lighting systems for environmental design and construction of sustainable roads[J]. Buildings, 2023, 13(4): 983. doi: 10.3390/buildings13040983
|
| [40] |
CELAURO C, CORRIERE F, GUERRIERI M, et al. Environmentally appraising different pavement and construction scenarios: A comparative analysis for a typical local road[J]. Transportation Research Part D: Transport and Environment, 2015, 34: 41-51. doi: 10.1016/j.trd.2014.10.001
|
| [41] |
LIU Y Y, WANG Y Q, LI D. Estimation and uncertainty analysis on carbon dioxide emissions from construction phase of real highway projects in China[J]. Journal of Cleaner Production, 2017, 144: 337-346. doi: 10.1016/j.jclepro.2017.01.015
|
| [42] |
GRAEL P F F, OLIVEIRA L S B L, OLIVEIRA D S B L, et al. Life cycle inventory and impact assessment for an asphalt pavement road construction: A case study in Brazil[J]. The International Journal of Life Cycle Assessment, 2021, 26(2): 402-416. doi: 10.1007/s11367-020-01842-5
|
| [43] |
BATOULI M, BIENVENU M, MOSTAFAVI A. Putting sustainability theory into roadway design practice: Implementation of LCA and LCCA analysis for pavement type selection in real world decision making[J]. Transportation Research Part D: Transport and Environment, 2017, 52: 289-302. doi: 10.1016/j.trd.2017.02.018
|
| [44] |
JIANG R, WU P. Estimation of environmental impacts of roads through life cycle assessment: A critical review and future directions[J]. Transportation Research Part D: Transport and Environment, 2019, 77: 148-163. doi: 10.1016/j.trd.2019.10.010
|
| [45] |
BARBIERI D M, LOU B W, WANG F S, et al. Assessment of carbon dioxide emissions during production, construction and use stages of asphalt pavements[J]. Transportation Research Interdisciplinary Perspectives, 2021, 11: 100436. doi: 10.1016/j.trip.2021.100436
|
| [46] |
GBOLOGAH F E, LI H Y, RODGERS M O. Demonstrating an empirical tool to predict fleet-wide heavy-duty vehicle fuel-saving benefits from low rolling resistance tires[J]. Transportation Research Record: Journal of the Transportation Research Board, 2019(2673): 361-372.
|
| [47] |
AKBARIAN M, MOEINI-ARDAKANI S S, ULM F J, et al. Mechanistic approach to pavement-vehicle interaction and its impact on life-cycle assessment[J]. Transportation Research Record: Journal of the Transportation Research Board, 2012(2306): 171-179.
|
| [48] |
LOUHGHALAM A, AKBARIAN M, ULM F J. Carbon management of infrastructure performance: Integrated big data analytics and pavement-vehicle-interactions[J]. Journal of Cleaner Production, 2017, 142: 956-964. doi: 10.1016/j.jclepro.2016.06.198
|
| [49] |
WANG T, LEE I S, KENDALL A, et al. Life cycle energy consumption and GHG emission from pavement rehabilitation with different rolling resistance[J]. Journal of Cleaner Production, 2012, 33: 86-96. doi: 10.1016/j.jclepro.2012.05.001
|
| [50] |
CHUPIN O, PIAU J M, CHABOT A. Evaluation of the structure-induced rolling resistance (SRR) for pavements including viscoelastic material layers[J]. Materials and Structures, 2013, 46(4): 683-696. doi: 10.1617/s11527-012-9925-z
|
| [51] |
NOSHADRAVAN A, WILDNAUER M, GREGORY J, et al. Comparative pavement life cycle assessment with parameter uncertainty[J]. Transportation Research Part D: Transport and Environment, 2013, 25: 131-138. doi: 10.1016/j.trd.2013.10.002
|
| [52] |
ZHANG Tong-tong. Life cycle assessment and carbon emission reduction path of different vehicles in Beijing-Tianjin intercity[D]. Beijing: Beijing Jiaotong University, 2023.
|
| [53] |
FU Pei, CAI Xu, LIU Jun-zhe, et al. Life cycle assessment of urban road traffic for various different vehicle types[J]. Chinese Journal of Automotive Engineering, 2023, 13(3): 416-430.
|
| [54] |
SONG Xiao-cong, DENG Chen-ning, SHEN Peng, et al. Environmental impact and carbon footprint analysis of pure electric vehicles based on life cycle assessment[J]. Research of Environmental Sciences, 2023, 36(11): 2179-2188.
|
| [55] |
MAO Rui-chang. Assessing the environmental impacts of urban transport infrastructure via life cycle assessment: Case study of a mega city-Shenzhen, China[D]. Shenzhen: Shenzhen University, 2017.
|
| [56] |
JULLIEN A, DAUVERGNE M, CEREZO V. Environmental assessment of road construction and maintenance policies using LCA[J]. Transportation Research Part D: Transport and Environment, 2014, 29: 56-65. doi: 10.1016/j.trd.2014.03.006
|
| [57] |
LIU Y Y, ZHU X D, WANG X X, et al. The influence of work zone management on user carbon dioxide emissions in life cycle assessment on highway pavement maintenance[J]. Advances in Meteorology, 2022, 2022: 1993564.
|
| [58] |
LIU Y Y, LI H J, WANG H H, et al. Integrated life cycle analysis of cost and CO2 emissions from vehicles and construction work activities in highway pavement service life[J]. Atmosphere, 2023, 14(2): 194. doi: 10.3390/atmos14020194
|
| [59] |
WU P, XIA B, ZHAO X B. The importance of use and end-of-life phases to the life cycle greenhouse gas (GHG) emissions of concrete-A review[J]. Renewable and Sustainable Energy Reviews, 2014, 37: 360-369. doi: 10.1016/j.rser.2014.04.070
|
| [60] |
NOLAND R B, HANSON C S. Life-cycle greenhouse gas emissions associated with a highway reconstruction: A New Jersey case study[J]. Journal of Cleaner Production, 2015, 107: 731-740. doi: 10.1016/j.jclepro.2015.05.064
|
| [61] |
SAXE S, KASRAIAN D. Rethinking environmental LCA life stages for transport infrastructure to facilitate holistic assessment[J]. Journal of Industrial Ecology, 2020, 24(5): 1031-1046. doi: 10.1111/jiec.13010
|
| [62] |
MILIUTENKO S, BJÖRKLUND A, CARLSSON A. Opportunities for environmentally improved asphalt recycling: The example of Sweden[J]. Journal of Cleaner Production, 2013, 43: 156-165. doi: 10.1016/j.jclepro.2012.12.040
|
| [63] |
SOLLAZZO G, LONGO S, CELLURA M, et al. Impact analysis using life cycle assessment of asphalt production from primary data[J]. Sustainability, 2020, 12(24): 10171. doi: 10.3390/su122410171
|
| [64] |
WU S P, XUE Y J, YE Q S, et al. Utilization of steel slag as aggregates for stone mastic asphalt (SMA) mixtures[J]. Building and Environment, 2007, 42(7): 2580-2585. doi: 10.1016/j.buildenv.2006.06.008
|
| [65] |
SHU X, HUANG B S. Recycling of waste tire rubber in asphalt and Portland cement concrete: An overview[J]. Construction and Building Materials, 2014, 67: 217-224. doi: 10.1016/j.conbuildmat.2013.11.027
|
| [66] |
GULOTTA T M, MISTRETTA M, PRATICò F G. A life cycle scenario analysis of different pavement technologies for urban roads[J]. Science of The Total Environment, 2019, 673: 585-593. doi: 10.1016/j.scitotenv.2019.04.046
|
| [67] |
LIANG Bo, ZHANG Haitao, LIANG Yuan, et al. Review on warm mixing asphalt technology[J]. Journal of Traffic and Transportation Engineering, 2023 23(2): 24-46. doi: 10.19818/j.cnki.1671-1637.2023.02.002
|
| [68] |
LIU J W, LI H, WANG Y, et al. Integrated life cycle assessment of permeable pavement: Model development and case study[J]. Transportation Research Part D: Transport and Environment, 2020, 85: 102381. doi: 10.1016/j.trd.2020.102381
|
| [69] |
ZHOU X X, ZHANG Z Y, WANG H P, et al. Review on the properties and mechanisms of asphalt modified with bio-oil and biochar[J]. Journal of Road Engineering, 2024, 4(4): 421-432. doi: 10.1016/j.jreng.2024.06.001
|
| [70] |
MORIMOTO R, SHIBAHARA N, KATO H. Life cycle assessment of road improvement projects considering innovations in vehicle technology and changes in traffic demand[J]. Journal of the Eastern Asia Society for Transportation Studies, 2013, 10: 1189-1202.
|
| [71] |
BONOLI A, DEGLI ESPOSTI A, MAGRINI C. A case study of industrial symbiosis to reduce GHG emissions: Performance analysis and LCA of asphalt concretes made with RAP aggregates and steel slags[J]. Frontiers in Materials, 2020, 7: 572955. doi: 10.3389/fmats.2020.572955
|
| [72] |
XU Shuang. The research on carbon emissions of different structural materials in bridge life cycle[D]. Wuhan: Wuhan University of Technology, 2012.
|