| Citation: | LIN Yu-han, CHEN Li-bo, XING Zhi-quan, CHEN Yu. Prediction of full-life axial compression performance of steel-reinforced concrete bridge piers in marine environments[J]. Journal of Traffic and Transportation Engineering, 2025, 25(5): 368-384. doi: 10.19818/j.cnki.1671-1637.2025.05.024 |
| [1] |
LIN Y H, LI X T, CHEN L B, et al. Performance analysis and prediction of axial stability capacity for CES slender columns subjected to chloride corrosion[J]. Structures, 2025, 80: 109917. doi: 10.1016/j.istruc.2025.109917
|
| [2] |
LIN Y H, XING Z Q, CHEN L B, et al. Axial stability of chloride-corroded CES slender columns: Experimental and numerical study[J]. Case Studies in Construction Materials, 2025, 22: e04671. doi: 10.1016/j.cscm.2025.e04671
|
| [3] |
ZHU Y, XING Z Q, GUO Y, et al. Corrosion-compression failure analysis of circular SRC short columns under chloride environment[J]. Engineering Failure Analysis, 2025, 169: 109164. doi: 10.1016/j.engfailanal.2024.109164
|
| [4] |
LI X T, LIN Y H, ZHANG C L, et al. Experimental study on interfacial bond-slip behavior of weathering steel and seawater sea-sand concrete in corrosive marine environments[J]. Thin-Walled Structures, 2024, 201: 112003. doi: 10.1016/j.tws.2024.112003
|
| [5] |
LI X T, ZHENG J H, LIN Y H, et al. Corrosion failure analysis of interfacial bond performance in circular seawater sea-sand concrete encased weathering steel structures[J]. Engineering Failure Analysis, 2025, 167: 108978. doi: 10.1016/j.engfailanal.2024.108978
|
| [6] |
GU Yin, DAI Xiang-dong, LI Pan, et al. Research on sei-smic performance of reinforced concrete bridge piers consi-dering influence of nonuniform corrosion[J]. Engineering Mechanics, 2022, 39(4): 113-122.
|
| [7] |
YUAN Wen-ting, QI Yan-jun, FANG Qing-he. Cross-sha-ped bidirectional quasi-static tests and damage analysis of corroded coastal bridge piers[J]. Engineering Mechanics, 2022, 39(3): 115-125.
|
| [8] |
SHEN Wen-du, SUN Hui-zhong. Experimental study on load capacity of eccentrically compressive elements of steel reinforced concrete[J]. Building Science, 1992, 8(4): 25-30.
|
| [9] |
SHI Qing-xuan, LI Xiao-jian, NIU Di-tao. Tentative study on the bearing capacity of RC eccentric compressive members before and after reinforcement corrosion[J]. Journal of Xi'an University of Architecture & Technology (Natural Science Edition), 1999, 31(3): 218-221.
|
| [10] |
SHI Qing-xuan, LI Xiao-jian, NIU Di-tao, et al. Experi-mental study of bearing capacity of corroded reinforced con-crete eccentric compressive members[J]. Industrial Con-struction, 2001, 31(5): 14-17.
|
| [11] |
YUAN W T, FANG Q H, DONG Z X. Evaluation of biaxial strength deterioration for coastal bridge piers under non-uniform corrosion[J]. KSCE Journal of Civil Engineering, 2022, 26(3): 1329-1343. doi: 10.1007/s12205-021-5969-3
|
| [12] |
ZHOU H J, XU Y N, PENG Y R, et al. Partially corroded reinforced concrete piers under axial compression and cyclic loading: An experimental study[J]. Engineering Structures, 2020, 203: 109880. doi: 10.1016/j.engstruct.2019.109880
|
| [13] |
JIANG Huan-jun, LIU Xiao-juan. Study on deformation-based performance index of corroded reinforced concrete column[J]. Journal of Building Structures, 2015, 36(7): 115-123.
|
| [14] |
XING Guo-hua, LUO Da-ming, NIU Di-tao. Deformation capacity model of corroded reinforced concrete columns[J]. Earthquake Engineering and Engineering Dynamics, 2016, 36(1): 91-100.
|
| [15] |
QIAO Q Y, DING R L, CAO W L. Axial local compressive behavior of reinforced concrete-filled stainless steel tubular column piers[J]. Journal of Constructional Steel Research, 2024, 212: 108228. doi: 10.1016/j.jcsr.2023.108228
|
| [16] |
QIAO Q Y, YANG Z Y, CAO W L. Axial compressive be-havior of stainless steel tube confined concrete column piers[J]. Marine Structures, 2021, 78: 103021. doi: 10.1016/j.marstruc.2021.103021
|
| [17] |
LI L, CHEN J, WANG W T, et al. Experimental and pre-diction model of axial compressive responses of corroded RC cylinders strengthened with CFRP[J]. Engineering Struc-tures, 2024, 317: 118649. doi: 10.1016/j.engstruct.2024.118649
|
| [18] |
ZAGHIAN S, MARTÍN-PÉREZ B, ALMANSOUR H. Finite element modelling of bridge piers subjected to eccentric load combined with reinforcement corrosion[J]. Engineering Structures, 2023, 283: 115822. doi: 10.1016/j.engstruct.2023.115822
|
| [19] |
ZAGHIAN S, MARTÍN-PÉREZ B, ALMANSOUR H. Nonli-near finite element modeling of the impact of reinforcement corrosion on bridge piers under concentric loads[J]. Struc-tural Concrete, 2022, 23(1): 138-153. doi: 10.1002/suco.202100254
|
| [20] |
YUAN Wei, LIU Zhen-liang, ZONG Li-na, et al. Time-dependent seismic performance analysis of steel reinforced concrete bridge piers in the marine environment[J]. Journal of Nanjing Tech University: Natural Science Edition, 2020, 42(3): 342-350.
|
| [21] |
LI Hong-nan, ZHANG Yu, LI Gang. Nonlinear seismic analysis of offshore bridges considering chloride ions corrosion effect[J]. China Civil Engineering Journal, 2015, 48(7): 112-122.
|
| [22] |
NIE Ying-hui, LI Jing-pei. Time-dependent seismic resilience analysis of RC bridge piers in chloride service environments[J]. Journal of Harbin Institute of Technology, 2025, 57(3): 14-24.
|
| [23] |
RINALDI Z, DI CARLO F, SPAGNUOLO S, et al. Influ-ence of localised corrosion on the cyclic response of reinforced concrete columns[J]. Engineering Structures, 2022, 256: 114037. doi: 10.1016/j.engstruct.2022.114037
|
| [24] |
MARTÍN-PÉREZ B, ZIBARA H, HOOTON R D, et al. A study of the effect of chloride binding on service life pre-dictions[J]. Cement and Concrete Research, 2000, 30(8): 1215-1223. doi: 10.1016/S0008-8846(00)00339-2
|
| [25] |
JIN Wei-liang, ZHAO Yu-xi. State-of-the-art on durability of concrete structures[J]. Journal of Zhejiang University (Engi-neering Science), 2002, 36(4): 371-380, 403.
|
| [26] |
BIONDINI F, CAMNASIO E, PALERMO A. Lifetime seis-mic performance of concrete bridges exposed to corrosion[J]. Structure and Infrastructure Engineering, 2014, 10(7): 880-900. doi: 10.1080/15732479.2012.761248
|
| [27] |
CHOE D E, GARDONI P, ROSOWSKY D, et al. Probabi-listic capacity models and seismic fragility estimates for RC columns subject to corrosion[J]. Reliability Engineering & System Safety, 2008, 93(3): 383-393.
|
| [28] |
DU Y G, CLARK L A, CHAN A H C. Residual capacity of corroded reinforcing bars[J]. Magazine of Concrete Research, 2005, 57(3): 135-147. doi: 10.1680/macr.2005.57.3.135
|
| [29] |
LI Li-feng, WU Wen-peng, HU Si-cong, et al. Time-dependent seismic fragility analysis of high pier bridge based on chloride ion induced corrosion[J]. Engineering Mechanics, 2016, 33(1): 163-170.
|
| [30] |
ANDRADE C, ALONSO C, MOLINA F J. Cover cracking as a function of bar corrosion: Part Ⅰ-Experimental test[J]. Materials and Structures, 1993, 26: 453-464. doi: 10.1007/BF02472805
|
| [31] |
RODRIGUEZ J, ANDRADE C. A validated user's manual for assessing the residual service life of concrete structures[R]. Madrid: DG Enterprise, 2001.
|
| [32] |
GB/T 50476—2019, Standard for design of concrete struc-ture durability[S].
|
| [33] |
GB 50164—2011, Standard for quality control of concrete[S].
|
| [34] |
BALAFAS I, BURGOYNE C J. Environmental effects on cover cracking due to corrosion[J]. Cement and Concrete Research, 2010, 40(9): 1429-1440. doi: 10.1016/j.cemconres.2010.05.003
|
| [35] |
WANG H J, ZHANG Z W, QIAN H L, et al. Galvanic corrosion induced localized defects and resulting strength reduction of circular steel tubes under axial compression: An experimental study[J]. Thin-Walled Structures, 2020, 154: 106881. doi: 10.1016/j.tws.2020.106881
|
| [36] |
GB/T 228.1—2020, Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S].
|
| [37] |
GB/T 50152—2012, Standard for test method of concrete structures[S].
|
| [38] |
EN 1994-1-1, Eurocode 4: Design of composite steel and con-crete structures, Part 1-1: General rules and rules for buildings[S].
|
| [39] |
JGJ 138—2016, Code for design of composite structures[S].
|
| [40] |
AISC 2022-8-1, ANSI/AISC 360-22: Specification for struc-tural steel buildings[S].
|
| [41] |
VECCHIO F J, COLLINS M P. The modified compression-field theory for reinforced concrete elements subjected to shear[J]. ACI Journal, 1986, 83(2): 219-231.
|
| [42] |
MANDER J B, PRIESTLEY M J N, PARK R. Theoretical stress-strain model for confined concrete[J]. Journal of structural engineering, 1988, 114(8): 1804-1826. doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804)
|
| [43] |
EL-TAWIL S M, DEIERLEIN G G. Fiber element analysis of composite beam-column cross-sections[R]. New York: Cornell University, 1996.
|
| [44] |
ZHAO X, WEN F, CHAN T M, et al. Theoretical stress-strain model for concrete in steel-reinforced concrete columns[J]. Journal of Structural Engineering, 2019, 145(4): 04019009. doi: 10.1061/(ASCE)ST.1943-541X.0002289
|