| Citation: | YANG Xiao-qiang, ZHANG Yuan, ZHU Li-guo, LAI Zhi-chao. Lateral impact behavior of high-performance concrete-filled steel tubular composite structural members[J]. Journal of Traffic and Transportation Engineering, 2025, 25(5): 399-413. doi: 10.19818/j.cnki.1671-1637.2025.05.026 |
| [1] |
ZHU Xiang, LU Xin-zheng, DU Yong-feng, et al. Simulation for running attitude of a train after derailment[J]. Journal of Vibration and Shock, 2014, 33(23): 145-149.
|
| [2] |
LU Xin-zheng, JIANG Jian-jing. Dynamic finite element simulation for the collapse of world trade center[J]. China Civil Engineering Journal, 2001, 34(6): 8-10.
|
| [3] |
XU L J, LU X Z, SMITH S T, et al. Scaled model test for collision between over-height truck and bridge superstructure[J]. International Journal of Impact Engineering, 2012, 49: 31-42. doi: 10.1016/j.ijimpeng.2012.05.003
|
| [4] |
SHARMA H, HURLEBAUS S, GARDONI P. Performance-based response evaluation of reinforced concrete columns subject to vehicle impact[J]. International Journal of Impact Engineering, 2012, 43: 52-62. doi: 10.1016/j.ijimpeng.2011.11.007
|
| [5] |
TAN J S, ELBAZ K, WANG Z F, et al. Lessons learnt from bridge collapse: A view of sustainable management[J]. Sustainability, 2020, 12(3): 1205. doi: 10.3390/su12031205
|
| [6] |
LIAO F Y, HAN L H, TAO Z. Behaviour of composite joints with concrete encased CFST columns under cyclic loading: Experiments[J]. Engineering Structures, 2014, 59: 745-764. doi: 10.1016/j.engstruct.2013.11.030
|
| [7] |
HAN L H, AN Y F. Performance of concrete-encased CFST stub columns under axial compression[J]. Journal of Constructional Steel Research, 2014, 93: 62-76. doi: 10.1016/j.jcsr.2013.10.019
|
| [8] |
HU C M, HAN L H, HOU C C. Concrete-encased CFST members with circular sections under laterally low velocity impact: Analytical behaviour[J]. Journal of Constructional Steel Research, 2018, 146: 135-154. doi: 10.1016/j.jcsr.2018.03.017
|
| [9] |
HOU C C, HAN L H, WANG F C, et al. Study on the impact behaviour of concrete-encased CFST box members[J]. Engineering Structures, 2019, 198: 109536. doi: 10.1016/j.engstruct.2019.109536
|
| [10] |
HOU C C, HAN L H, LIANG Z S, et al. Performance of concrete-encased CFST subjected to low-velocity impact: Shear resistance analysis[J]. International Journal of Impact Engineering, 2021, 150: 103798. doi: 10.1016/j.ijimpeng.2020.103798
|
| [11] |
DING Ji-nan, WANG Qing-he, REN Qing-xin. Mechanical performance of circular concrete-encased CFDST stub columns under axial compression[J]. Journal of Building Structures, 2024, 45(2): 123-135.
|
| [12] |
HAN L H, WANG Z B, XU W, et al. Behavior of concrete-encased CFST members under axial tension[J]. Journal of Structural Engineering, 2016, 142 (2): 04015149. doi: 10.1061/(ASCE)ST.1943-541X.0001422
|
| [13] |
LI Ming-lun, REN Qing-xin, WANG Qing-he, et al. Experimental study and finite element analysis on flexural performance of square concrete-encased concrete-filled double-skin steel tubular members[J]. Progress in Steel Building Structures, 2025, 27(6): 23-34.
|
| [14] |
WANG K, ZHU Z Y, YANG Y, et al. Study on shear capacity of prestressed composite joints with concrete-encased CFST columns[J]. Advances in Structural Engineering, 2021, 24 (11): 2457-2471. doi: 10.1177/13694332211000558
|
| [15] |
WU Q X, SHE Z M, YUAN H H. Experimental study of UHPC-encased CFST stub columns under axial compression[J]. Structures, 2021, 32: 433-447. doi: 10.1016/j.istruc.2021.03.053
|
| [16] |
CHEN H Y, LIAO F Y, YANG Y X, et al. Behavior of ultra-high-performance concrete (UHPC) encased concrete-filled steel tubular (CFST) stub columns under axial compression[J]. Journal of Constructional Steel Research, 2023, 202: 107795. doi: 10.1016/j.jcsr.2023.107795
|
| [17] |
GAO X L, SHEN S Y, CHEN G X, et al. Experimental and numerical study on axial compressive behaviors of reinforced UHPC-CFST composite columns[J]. Engineering Structures, 2023, 278: 115315. doi: 10.1016/j.engstruct.2022.115315
|
| [18] |
WU Q X, XU Z K, YUAN H H, et al. Ultimate bearing capacity of UHPC-encased CFST medium-long columns under axial compression[J]. Magazine of Concrete Research, 2023, 75(10): 487-505. doi: 10.1680/jmacr.22.00050
|
| [19] |
YANG Yu-xing, LIAO Fei-yu, WANG Jing-feng, et al. Experimental research on flexural performance of UHPC encased CFSTs under pure bending[J]. Industrial Construction, 2024, 54(11): 112-120.
|
| [20] |
YANG Yu-xing, LIAO Fei-yu, CHEN Yu-feng, et al. Research on mechanical properties of UHPC encased CFSTs under eccentrically compressive loading[J]. Industrial Construction, 2024, 54(11): 121-128.
|
| [21] |
AYOUGH P, WANG Y H, ZENG W Y, et al. Numerical investigation and design of UHPC-encased CFST stub columns under axial compression[J]. Engineering Structures, 2024, 302: 117387. doi: 10.1016/j.engstruct.2023.117387
|
| [22] |
WEI Jian-gang, YING Hao-dong, YANG Yan. Seismic response and numerical simulation of concrete-filled steel tubular composite column with UHPC plates[J]. Journal of Traffic and Transportation Engineering, 2025, 25(3): 82-100.
|
| [23] |
KONG Wen-yuan, XING Zhi-quan, CHEN Li-bo, et al. Axial compression performance of CFST pier column under long-term load reinforced by encased UHPC[J/OL]. Journal of Traffic and Transportation Engineering, 2025,
|
| [24] |
HU Chang-ming, HAN Lin-hai. Experimental behavior of circular concrete-encased concrete-filled steel tubes under lateral impact[J]. China Civil Engineering Journal, 2016, 49(10): 11-17.
|
| [25] |
HUANG Y E, YOUNG B. The art of coupon tests[J]. Journal of Constructional Steel Research, 2014, 96: 159-175. doi: 10.1016/j.jcsr.2014.01.010
|
| [26] |
YANG Xiao-qiang. Dynamic constitutive model of structural steel and lateral impact resistance of square high-strength CFST members[D]. Harbin: Harbin Institute of Technology, 2020.
|
| [27] |
WANG Y, QIAN X D, LIEW J Y R, et al. Experimental behavior of cement filled pipe-in-pipe composite structures under transverse impact[J]. International Journal of Impact Engineering, 2014, 72: 1-16. doi: 10.1016/j.ijimpeng.2014.05.004
|
| [28] |
MURRAY Y D. Users manual for LS-DYNA concrete material model 159[R]. Washington DC: Federal Highway Administration, 2007.
|
| [29] |
JIA P C, WU H, WANG R, et al. Dynamic responses of reinforced ultra-high performance concrete members under low-velocity lateral impact[J]. International Journal of Impact Engineering, 2021, 150: 103818. doi: 10.1016/j.ijimpeng.2021.103818
|
| [30] |
GUO W, FAN W, SHAO X D, et al. Constitutive model of ultra-high-performance fiber-reinforced concrete for low-velocity impact simulations[J]. Composite Structures, 2018, 185: 307-326. doi: 10.1016/j.compstruct.2017.11.022
|
| [31] |
LI C J, AOUDE H. Effect of UHPC jacketing on the shear and flexural behaviour of high-strength concrete beams[J]. Structures, 2023, 51: 1972-1996. doi: 10.1016/j.istruc.2023.03.104
|
| [32] |
FAN W, XU X, ZHANG Z Y, et al. Performance and sensitivity analysis of UHPFRC-strengthened bridge columns subjected to vehicle collisions[J]. Engineering Structures, 2018, 173: 251-268. doi: 10.1016/j.engstruct.2018.06.113
|
| [33] |
FAN W, SHEN D J, YANG T, et al. Experimental and numerical study on low-velocity lateral impact behaviors of RC, UHPFRC and UHPFRC-strengthened columns[J]. Engineering Structures, 2019, 191: 509-525. doi: 10.1016/j.engstruct.2019.04.086
|
| [34] |
RUSSELL H G, GRAYBEAL B A. Ultra-high performance concrete: A state-of-the-art report for the bridge community[R]. Washington DC: Federal Highway Administration, 2013.
|
| [35] |
GRAYBEAL B A. Material property characterization of ultra-high performance concrete[R]. Washington DC: Federal Highway Administration, 2006.
|
| [36] |
YUN X, GARDNER L. Stress-strain curves for hot-rolled steels[J]. Journal of Constructional Steel Research, 2017, 133: 36-46. doi: 10.1016/j.jcsr.2017.01.024
|
| [37] |
ABRAMOWICZ W, JONES N. Dynamic axial crushing of square tubes[J]. International Journal of Impact Engineering, 1984, 2(2): 179-208. doi: 10.1016/0734-743X(84)90005-8
|
| [38] |
YANG X Q, YANG H, GARDNER L, et al. A continuous dynamic constitutive model for normal-and high-strength structural steels[J]. Journal of Constructional Steel Research, 2022, 192: 107254. doi: 10.1016/j.jcsr.2022.107254
|