WEN Ze-feng, JIN Xue-song, XIAO Xin-biao. Influence of non-steady state loading on two-dimensional wheel-rail pure rolling contact stresses and deformation[J]. Journal of Traffic and Transportation Engineering, 2006, 6(4): 14-19.
Citation: WEN Ze-feng, JIN Xue-song, XIAO Xin-biao. Influence of non-steady state loading on two-dimensional wheel-rail pure rolling contact stresses and deformation[J]. Journal of Traffic and Transportation Engineering, 2006, 6(4): 14-19.

Influence of non-steady state loading on two-dimensional wheel-rail pure rolling contact stresses and deformation

More Information
  • Author Bio:

    Wen Ze-feng(1976-), male, PhD, associate researcher, 86-28-87634355, zfwen@home.swjtu.edu.cn

  • Received Date: 2006-04-17
  • Publish Date: 2006-12-25
  • In order to study the relation between wheel-rail corrugation surface and non-steady state loading, a two-dimensional elastic-plastic model of repeated frictionless wheel-rail rolling contact was established, the effects of the fluctuating amplitude coefficient of normal contact pressure on the residual stresses, strains and displacements of rail were analyzed.An advanced cyclic plasticity model developed by Jiang and Sehitoglu was used, material ratchetting effect was considered, non-steady state rolling contact was only considered as the harmonic variation of normal contact pressure, repeated rolling contact was simulated by the multiple translations of varying semielliptical Hertzian pressure distribution across elastic-plastic semi-infinite half space.Analysis result shows that non-steady state normal contact pressure results in a wavy rail surface profile with the same wavelength as the pressure; as rolling time increases, rail residual stress increases, but tends to stabilize, rail residual strain also increases, but ratchetting rate decays; when preassure fluctuating amplitude coefficient increases, rail residual stress in rolling direction below the trough and crest of wavy deformation increase respectively, rail residual stress in axial direction, rail residual shear strain and surface displacement in longitudinal direction below the trough increase respectively, but rail residual stress in axial direction, rail residual shear strain and rail surface displacement in longitudinal direction below the crest decrease respectively, the wave depth increases.

     

  • loading
  • [1]
    Bower A F, Johnson K L. Plastic flow and shakedown of the rail surface in repeated wheel-rail contact[J]. Wear, 1991, 144(1/2): 1-18.
    [2]
    Jiang Yan-yao, Sehitoglu H. Rolling contact stress analysis with the application of a new plasticity model[J]. Wear, 1996, 191(1/2): 35-44.
    [3]
    Mcdowell D L, Moyar G J. Effects of non-linear kinematic hardening on plastic deformation and residual stresses in rolling line contact[J]. Wear, 1991, 144(1/2): 19-37.
    [4]
    Hearle A D, Johnson K L. Cumulative plastic flow in rolling and sliding line contact[J]. ASME Journal of Applied Mechanics, 1987, 54(1): 1-7. doi: 10.1115/1.3172958
    [5]
    Yu M, Moran B, Keer L M. A direct analysis of two-dimensional elastic-plastic rolling contact[J]. ASME Journal of Tribology, 1993, 115(2): 227-236. doi: 10.1115/1.2920996
    [6]
    Yu M, Moran B, Keer L M. A direct analysis of three-dimensional elastic-plastic rolling contact[J]. ASME Journal of Tribology, 1995, 117(2): 234-243. doi: 10.1115/1.2831236
    [7]
    Jiang Yan-yao, Sehitoglu H. An analytical approach to elastic-plastic stress analysis of rolling contact[J]. ASME Journal of Tribology, 1994, 116(3): 577-587. doi: 10.1115/1.2928885
    [8]
    Jiang Yan-yao, Sehitoglu H. A model for rolling contact failure[J]. Wear, 1999, 224(1): 38-49. doi: 10.1016/S0043-1648(98)00311-1
    [9]
    Bhargava V, Hahn G T, Rubin C A. An elastic-plastic finite element model of rolling contact[J]. ASME Journal Applied Mechanics, 1985, 52(1): 66-82.
    [10]
    Bhargava V, Hahn G T, Rubin C A. Analysis of rolling contact with kinematic hardening for rail steel properties[J]. Wear, 1988, 122(3): 267-283. doi: 10.1016/0043-1648(88)90014-2
    [11]
    Ham G L, Hahn G T, Rubin C A, et al. Finite element analysis of the influence of kinematic hardening in two-dimensional, repeated, rolling-sliding contact[J]. Tribology Transactions, 1989, 32(3): 311-316. doi: 10.1080/10402008908981894
    [12]
    Kulkarni S M, Rubin C A, Hahn G T. Elasto-plastic coupled temperature-displacement finite element analysis of two-dimensional rolling-sliding contact with a translating heat source[J]. ASME Journal of Tribology, 1991, 113(1): 93-101. doi: 10.1115/1.2920609
    [13]
    Howell M, Hahn G T, Rubin C A, et al. Finite element analysis of rolling contact for non-linear kinematic hardening bearing steel [J]. ASME Journal of Tribology, 1995, 117(4): 729-736. doi: 10.1115/1.2831544
    [14]
    Jiang Yan-yao, Chang Jian-jun, Xu Bi-qiang. Elastic-plastic finite element stress analysis of two-dimensional rolling contact[A]// Hydraulic Failure Analysis: Fluids, Components and System Effects[C]. West Conshohocken: American Society for Testing and Materials, 2001.
    [15]
    Jiang Yan-yao, Xu Bi-qiang, Sehitoglu H. Three-dimensional elastic-plastic stress analysis of rolling contact[J]. ASME Journal of Tribology, 2002, 124(4): 699-708. doi: 10.1115/1.1491978
    [16]
    Xu Bi-qiang, Jiang Yan-yao. Elastic-plastic finite element analysis of partial slip rolling contact[J]. ASME Journal of Tribology, 2002, 124(1): 20-26. doi: 10.1115/1.1395630
    [17]
    Dang Van K, Maitournam M H. Steady-state flow in classical elastoplasticity: applications to repeated rolling and sliding contact[J]. Journal of the Mechanics and Physics of Solids, 1993, 41(11): 1 691-1 710. doi: 10.1016/0022-5096(93)90027-D
    [18]
    ShimaM, OkadaK. Measurements of subsurface plasticflow in rolling contact[J]. Journal of Japan Society of Lubrication Engineers, 1981, 26(1): 75-80.
    [19]
    Hahn G T, Huang Q. Rolling contact deformation of 1100 aluminum disks[J]. Metallurgical Transactions A, 1986, 17(7): 1 561-1 572.
    [20]
    Krause H, Senuma T. Investigation into the influence of dynamic forces on the tribological behavior of bodies in rolling/sliding contact with particular regard to surface corrugations[J]. ASME Journal of Lubrication Technology, 1981, 103(1): 26-34. doi: 10.1115/1.3251610
    [21]
    Johnson K L. Contact Mechanics[M]. Cambridge: Cambridge University Press, 1985.
    [22]
    Jiang Yan-yao, Sehitoglu H. Modeling of cyclic ratchetting plasticity: partⅠ-development of constitutive equations[J]. ASME Journal of Applied Mechanics, 1996, 63(4): 720-725.
    [23]
    Jiang Yan-yao, Sehitoglu H. Modeling of cyclic ratchetting plasticity: partⅡ-implement of the new model and comparison of theory with experiments[J]. ASME Journal of Applied Mechanics, 1996, 63(4): 726-733.
    [24]
    Ohno N, Wang J D. Kinematic hardening rules for simulation of ratchetting behavior[J]. European Journal of Mechanics A/Solids, 1994, 13(4): 519-531.
    [25]
    Hibbitt D, Karlsson B, Sorensen P. ABAQUS/Standard User's Manual[M]. Pawtucket RI: ABAQUS, Inc., 2003.
    [26]
    Jin Xue-song, Wen Ze-feng, Wang Kai-yu, et al. Effect of rail corrugation formation on dynamical behaviour of rail vehicle and track[J]. Journal of Sound and Vibration, 2006, 293(3/4/5): 830-855.
    [27]
    Jiang Yan-yao, Sehitoglu H. Cyclic ratchetting of 1070 steel under multiaxial stress state[J]. International Journal of Plasticity, 1994, 10(5): 579-608.
    [28]
    Jiang Yan-yao, Sehitoglu H. Multiaxial cyclic ratchetting under multiple step loading[J]. International Journal of Plasticity, 1994, 10(8): 849-870.
    [29]
    金学松, 温泽峰, 王开云. 钢轨磨耗型波磨计算模型与数值方法[J]. 交通运输工程学报, 2005, 5(2): 12-18. http://transport.chd.edu.cn/article/id/200502004

    Jin Xue-song, Wen Ze-feng, Wang Kai-yun. Theoretical model and numerical method of rail corrugation[J]. Journal of Traffic and Transportation Engineering, 2005, 5(2): 12-18. (in Chinese) http://transport.chd.edu.cn/article/id/200502004
    [30]
    Jiang Yan-yao. A fatigue criterion for general multiaxial loading[J]. Fatigue & Fracture of Engineering Materials & Structures, 2000, 23(1): 19-32.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (258) PDF downloads(248) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return