HUANG Ya-fei, LIU Tao. Bi-level programming model and algorithm of optimal toll rate for highway network[J]. Journal of Traffic and Transportation Engineering, 2006, 6(4): 105-111.
Citation: HUANG Ya-fei, LIU Tao. Bi-level programming model and algorithm of optimal toll rate for highway network[J]. Journal of Traffic and Transportation Engineering, 2006, 6(4): 105-111.

Bi-level programming model and algorithm of optimal toll rate for highway network

More Information
  • Author Bio:

    Huang Ya-fei(1975-), male, lecturer, 86-731-8169048, xyrhyh@163.com

  • Received Date: 2006-07-21
  • Publish Date: 2006-12-25
  • In order to find system and science method to calculate the optimal toll rate of highway network, a bi-level programming model to determine the optimal toll rate was put forward, the relationship among highway network managers, toll road operators and users was described.Its upper objective function was consumer surplus which should be maximized, its lower-level problem was multi-vehicle-type stochastic user equilibrium model with elastic demand.A kind of hybrid optimization algorithm combined genetic algorithm and simulated annealing to solve it was proposed.Calculation result shows that the value of revenue for highway network influences the toll rate directly, furthermore, it influences OD traffic flows, and the influence on the vehicle types with low time value is more obvious than on the vehicle types with high time value, which indicates that the model can balance the benefits among managers, operators and users reasonably, and reflect the fact more accurately when considering vehicle types; compared with genetic algorithm and simulated annealing algorithm, the computation result of the algorithm for the model is least, the algorithm is feasible.

     

  • loading
  • [1]
    杨兆升, 杨志宏, 赵丹华. 长平高速公路最优收费标准制定方法[J]. 交通运输工程学报, 2003, 3(1): 57-61. doi: 10.3321/j.issn:1671-1637.2003.01.013

    Yang Zhao-sheng, Yang Zhi-hong, Zhao Dan-hua. Optimal toll standard in Chang-ping freeway[J]. Journal of Traffic and Transportation Engineering, 2003, 3(1): 57-61. (in Chinese) doi: 10.3321/j.issn:1671-1637.2003.01.013
    [2]
    陆正峰. 收费高速公路最优收费费率的研究[J]. 西安公路交通大学学报, 1997, 17(3): 105-108 https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL703.023.htm

    Lu Zheng-feng.Study on toll freeway's optimal toll rate[J]. Journal of Xi'an Highway University, 1997, 17(3): 105-108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL703.023.htm
    [3]
    Yang Hai, Zhang Xiao-ning, Meng Qiang. Modeling private highways in networks with entry-exit based toll charges[J]. Transportation Research Part B, 2004, 38(3): 191-213.
    [4]
    陈宽民, 罗小强. 城市快速轨道交通合理票价的博弈分析[J]. 长安大学学报: 自然科学版, 2005, 25(4): 52-55. doi: 10.3321/j.issn:1671-8879.2005.04.013

    Chen Kuan-min, Luo Xiao-qiang. Game-theory of reasonable ticket price for urban railway transport[J]. Journal of Chang'an University: Natural Science Edition, 2005, 25(4): 52-55. (in Chinese) doi: 10.3321/j.issn:1671-8879.2005.04.013
    [5]
    李志纯, 谷强, 史峰. 弹性需求下拥挤道路收费的模型与算法研究[J]. 交通运输工程学报, 2001, 1(3): 81-85. doi: 10.3321/j.issn:1671-1637.2001.03.020

    Li Zhi-chun, Gu Qiang, Shi Feng. Toll model and algorithm of road jammed with traffic based on elastic demand[J]. Journal of Traffic and Transportation Engineering, 2001, 1(3): 81-85. (in Chinese) doi: 10.3321/j.issn:1671-1637.2001.03.020
    [6]
    李志纯, 黄海军. 弹性需求下的组合出行模型与求解算法[J]. 中国公路学报, 2005, 18(3): 94-98. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200503020.htm

    Li Zhi-chun, Huang Hai-jun. Model and solution algorithm with combined travel under elastic demand[J]. China Journal of Highway and Transport, 2005, 18(3): 94-98. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200503020.htm
    [7]
    刘伟铭. 道路收费系统的优化模型及算法[M]. 北京: 人民交通出版社, 2005.
    [8]
    Yang Hai. Heuristic algorithm for the bilevel origin-destination matrix estimation problem[J]. Transportation Research Part B, 1995, 29(5): 231-242.
    [9]
    刘灿齐. 现代交通规划学[M]. 北京: 人民交通出版社, 2001.
    [10]
    Yang Hai, Yagar S. Traffic assignment and traffic control in general freeway-arterial corridor systems[J]. Transportation Research Part B, 1994, 28(4): 463-486.
    [11]
    Lundy M, Mees A. Convergence of an annealing algorithm[J]. Mathematical Programming, 1986, 34(1): 111-124.
    [12]
    刘伟铭, 姜山. 基于GASA混合优化策略的双层规划模型求解算法研究[J]. 土木工程学报, 2003, 36(7): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200307005.htm

    Liu Wei-ming, Jiang Shan. GASA hybrid optimization strategy for bilevel programming models[J]. China Civil Engineering Journal, 2003, 36(7): 27-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200307005.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (315) PDF downloads(438) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return