Liu Xiao-qun, Ma Shi-hua. Optimization algorithm of multi-truck multi-category goods loading based on benchmark methods[J]. Journal of Traffic and Transportation Engineering, 2007, 7(1): 99-105.
Citation: Liu Xiao-qun, Ma Shi-hua. Optimization algorithm of multi-truck multi-category goods loading based on benchmark methods[J]. Journal of Traffic and Transportation Engineering, 2007, 7(1): 99-105.

Optimization algorithm of multi-truck multi-category goods loading based on benchmark methods

More Information
  • Author Bio:

    Liu Xiao-qun(1980-), male, PhD, assistant researcher, +86-10-88015756, hustlxq@126.com

  • Received Date: 2006-10-09
  • Publish Date: 2007-02-25
  • According to the ratio difference of volume and mass between trucks and goods, an optimization algorithm was designed by combinatorial theory on the basis of different benchmarks in order to make full use of the loading mass and volume of trucks. Light goods were marked with trucks' loading mass so as to promote the mass utilization rate of trucks, on the premise that the loading volume of trucks was fully used; heavy goods were marked with trucks' loading volume; even goods were marked with the ratio of volume and mass to optimize the trucks' loading volume and mass spontaneously, as both the dimension and load of goods were even relative to trucks. The comparison result between benchmark algorithm and other optimization algorithms shows that the efficiency of benchmark algorithm is prior to other algorithms, it has strong robustness, and especially fits to large-scale multi-truck multi-category goods loading.

     

  • loading
  • [1]
    Dowsland K A, Dowsland WB. Packing problems[J]. European Journal of Operational Research, 1992, 56(1): 2-14. doi: 10.1016/0377-2217(92)90288-K
    [2]
    Martello S, Vigo D. Exact solution of the two-dimensional finite bon packing problem[J]. Management Science, 1998, 44(3): 388-399. doi: 10.1287/mnsc.44.3.388
    [3]
    Bhattacharya S, Roy R. An exact depth-first algorithmfor the pallet loading problem[J]. European Journal of Operational Research, 1998, 110(3): 610-625. doi: 10.1016/S0377-2217(97)00272-5
    [4]
    Scheithauer G, Sommerweib U. 4-block heuristic for the rectangle packing problem[J]. European Journal of Operational Research, 1998, 108(3): 509-526. doi: 10.1016/S0377-2217(96)00359-1
    [5]
    Berghammer R, Reuter F. Alinear approxi mation algorithm for bin packing with absolute approxi mation factor[J]. Science of Computer Programming, 2003, 48(1): 67-80. doi: 10.1016/S0167-6423(03)00011-X
    [6]
    Armstrong R D, Jin Zhi-ying. Strongly polynomial simplex algorithm for bipartite vertex packing[J]. Discrete Applied Mathematics, 1996, 64(2): 97-103. doi: 10.1016/0166-218X(94)00122-T
    [7]
    孙焰, 李致中. 求双目标配装的多项式近似算法[J]. 长沙铁道学院学报, 1997, 15(2): 33-39. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD199702006.htm

    Sun Yan, Li Zhi-zhong. The polynomial algorithms for the allocation problem with two aims[J]. Journal of Changsha Rail way University, 1997, 15(2): 33-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD199702006.htm
    [8]
    Kenyon C, Remila E. A near-optimal solution to a two-dimensional cutting stock problem[J]. Mathematics of Operations Research, 2000, 25(4): 645-656. doi: 10.1287/moor.25.4.645.12118
    [9]
    Shachnai H, Tamir T. Polynomial ti me approxi mation schemes for class-constrained packing problems[J]. Journal of Scheduling, 2001, 4(6): 312-338.
    [10]
    Lodi A, Martello S, Vigo D. Recent advances on two-dimensional bin packing problems[J]. Discrete Applied Mathematics, 2002, 123(1/3): 379-396.
    [11]
    卜雷, 尹传忠, 蒲云. 优化普零货物拼箱配装的遗传算法[J]. 交通运输工程学报, 2004, 4(4): 84-87. http://transport.chd.edu.cn/article/id/200404021

    Bu Lei, Yin Chuan-zhong, Pu Yun. Genetic algorithm for optimal arrangement of general piece goods[J]. Journal of Traffic and Transportation Engineering, 2004, 4(4): 84-87. (in Chinese) http://transport.chd.edu.cn/article/id/200404021
    [12]
    Chen Ping, Fu Zhao-hui, Li m A, et al. The two-dimensional packing problemfor irregular objects[J]. International Journal on Artificial Intelligence Tools, 2004, 13(3): 429-448. doi: 10.1142/S0218213004001624
    [13]
    Coff man E G, Garey MR, Johnson D S. Approxi mation Al-gorithms for NP-Hard Problems[M]. Boston: PWS Publishing Company, 1997.
    [14]
    Kang J, Park S. Algorithms for the variable sized bin packing problem[J]. European Journal of Operational Research, 2003, 147(2): 365-372.
    [15]
    徐天亮, 刘小群. 多品种货物配装的优化方法[J]. 华中科技大学学报: 自然科学版, 2003, 31(9): 15-17. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG200309005.htm

    Xu Tian-liang, Liu Xiao-qun. Optimization for the loading of multi-category goods[J]. Journal of Huazhong University of Science and Technology: Nature Science Edition, 2003, 31(9): 15-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG200309005.htm
    [16]
    刘小群, 马士华, 徐天亮. 装载能力有限下多品种货物配装的容重比平衡法[J]. 工业工程与管理, 2004, 9(3): 62-66. https://www.cnki.com.cn/Article/CJFDTOTAL-GYGC200403014.htm

    Liu Xiao-qun, Ma Shi-hua, Xu Tian-liang. The cubadge-weight balance algorithm for the loading of multi-category goods under the li mited loading capacity[J]. Industrial Engineering and Management, 2004, 9(3): 62-66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYGC200403014.htm
    [17]
    徐同连, 栾琨, 贾洪飞. 共同配送合并策略及其配送成本[J]. 长安大学学报: 自然科学版, 2006, 26(3): 68-71. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200603016.htm

    Xu Tong-lian, Luan Kun, Jia Hong-fei. Consolidation strategy and distribution cost of joint distribution[J]. Journal of Chang an University: Natural Science Edition, 2006, 26(3): 68-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200603016.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (268) PDF downloads(478) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return