Bu Ren-xiang, Liu Zheng-jiang, Hu Jiang-qiang. Berthing controller of underactuated ship with nonlinear sliding mode[J]. Journal of Traffic and Transportation Engineering, 2007, 7(4): 24-29.
Citation: Bu Ren-xiang, Liu Zheng-jiang, Hu Jiang-qiang. Berthing controller of underactuated ship with nonlinear sliding mode[J]. Journal of Traffic and Transportation Engineering, 2007, 7(4): 24-29.

Berthing controller of underactuated ship with nonlinear sliding mode

More Information
  • Author Bio:

    Bu Ren-xiang (1973-), male, lecturer, doctoral student of engineering, +86-411-84729527, burenxiang@tom.com

  • Received Date: 2007-04-06
  • Publish Date: 2007-08-25
  • In order to accurately control typical berthing steering, a dynamic output feedback controller was designed for the automatic berthing of underactuated surface ship with nonholonomic acceleration constraints. The control problems of path planning and following were transformed into the static control problem of scalar zero-order-systems by means of iterative sliding mode control (ISMC), in which nonlinear sliding surfaces were recursively and iteratively designed in augmented state space. Integrating with increment feedback, the controller was proved to stabilize ship's motion in typical berthing steering without estimating systemic uncertainties and the disturbances resulted from current and wind. Numerical simulation result shows that the controller is strongly robust to the variation of the disturbances, and ship's planar trajectory is adjusted by using only one variable due to its simple design procedure.

     

  • loading
  • [1]
    Fossen TI. Marine control systems-guidance, navigation and control of ships, rigs and underwater vehicles[D]. Trondheim: Norwegian University of Science and Technology, 2002.
    [2]
    Wichlund K Y, Sordalen OJ, Egeland O. Control properties of underactuated vehicles[C]∥IEEE. Proceedings of the IEEEInternational Conference on Robotics and Automation. Nagoya: IEEE Computer Society Press, 1995: 2009-2014.
    [3]
    Wichlund K Y, Sordalen OJ, Egeland O. Control of vehicles with second order nonholonomic constraints: underactuated vehicles[C]∥ECCA, IFAC and IEEE. Proceeding of Euro-pean Control Conference. Rome: IEEE Computer Society Press, 1995: 3086-3091.
    [4]
    Reyhanoglu M. Control and stabilization of an underactuated surface vessel[C]∥IEEE. Proceedings of the35th IEEE Conference on Decision and Control. Kobe: IEEE Computer Society Press, 1996: 2371-2376.
    [5]
    Pettersen K Y. Exponential stabilization of underactuated vehicles[D]. Trondheim: Norwegian University of Science Technology, 1996.
    [6]
    Do K D, Pan J, Jiang Z P. Global exponential tracking control of underactuated surface ships in the body frame[C]∥AACC. Proceedings of the American Control Conference. Anchorage: AACC, 2002: 4702-4707.
    [7]
    Do K D, Pan J. Global waypoint tracking control of underactuated ships under relaxed assumptions[C]∥IEEE. Proceedings of the42nd IEEE Conference on Decision and Control. Hawaii: IEEE Computer Society Press, 2003: 1244-1249.
    [8]
    李铁山, 杨盐生, 郑云峰. 不完全驱动船舶非线性控制[J]. 交通运输工程学报, 2003, 3 (4): 39-43. http://transport.chd.edu.cn/article/id/200304002

    Li Tie-shan, Yang Yan-sheng, Zheng Yun-feng. Nonlinear control of underactuated ships[J]. Journal of Traffic and Transportation Engineering, 2003, 3 (4): 39-43. (in Chinese) http://transport.chd.edu.cn/article/id/200304002
    [9]
    Kol manovsky I, McClamroch N H. Developments in nonholonomic control problems[J]. IEEE Control Systems, 1995, 15 (6): 20-36. doi: 10.1109/37.476384
    [10]
    Zhang Yao, Grant E H, Pratyush S. A multivariable neural controller for automatic ship berthing[J]. IEEE Control Systems, 1997, 17 (4): 31-44. doi: 10.1109/37.608535
    [11]
    Karim D, Yskandar H. Ship optimal path planning and artifi-cial neural netsfor berthing[C]∥IEEE. IEEE-OCEANS-OSATES-94. Brest: IEEE Computer Society Press, 1994: 785-790.
    [12]
    Karim D, Yskandar H. Minimum time-energy trajectory planning for automatic ship berthing[J]. IEEE Journal of Oceanic Engineering, 1995, 20 (1): 4-12.
    [13]
    Kim T H, Basar T, Ha I J. Asymptotic stabilization of an underactuated surface vessel via logic-based control[C]∥AACC. Proceedings of the American Control Conference. Anchorage: AACC, 2002: 4678-4683.
    [14]
    卜仁祥, 刘正江, 李铁山. 船舶航迹迭代非线性滑模增量反馈控制算法[J]. 交通运输工程学报, 2006, 6 (4): 75-79. http://transport.chd.edu.cn/article/id/200604017

    Bu Ren-xiang, Liu Zheng-jiang, Li Tie-shan. Increment feedback control algorithmof shiptrack based on nonlinear sliding mode[J]. Journal of Traffic and Transportation Engineering, 2006, 6 (4): 75-79. (in Chinese) http://transport.chd.edu.cn/article/id/200604017
    [15]
    卜仁祥, 刘正江, 洪碧光. 限制水域中船舶航速安全的综合评判[D]. 大连: 大连海事大学, 1999.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (393) PDF downloads(242) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return