Citation: | YU Li-jun, XU Jian-min. Estimation models of distribution functions for travel time value with maximum entropy principle[J]. Journal of Traffic and Transportation Engineering, 2008, 8(1): 83-88. |
[1] |
Beesley ME. The value of time spent in traveling: some new evidences[J]. Economical, 1965, 32: 174-185. doi: 10.2307/2552547
|
[2] |
Deserpa A C. A theory of the economics of time[J]. The Economic Journal, 1971, 81(4): 828-845.
|
[3] |
Hensher D A. A probabilistic disaggregate model of binary mode choice[R]. Melbourne: Australian Road Research Board, 1974.
|
[4] |
Forsyth PJ. The value of time in an economy with taxation[J]. Journal of Transport Economics and Policy, 1980, 14(3): 337-362.
|
[5] |
Small K. The scheduling of consumer activities: work trips[J]. American Economic Review, 1982, 72(3): 467-479.
|
[6] |
Hensher D, Milthorpe F, Smith N, et al. Urban tolled roads and the value of travel time savings[J]. Economic Record, 1990, 6(2): 146-156.
|
[7] |
Hensher D A. Measurement of the valuation of travel time savings[J]. Journal of Transport Economics and Policy, 2001, 35(1): 71-98.
|
[8] |
Wardman M. A review of British evidence on time and service quality valuations[J]. Transportation Research Part E, 2001, 37(2): 107-128.
|
[9] |
Jovicic G, Hansen C O. A passenger travel demand model for Copenhagen[J]. Transportation Research Part A, 2003, 37(2): 333-349.
|
[10] |
Brownstone D, Small K A. Valuing time and reliability: assessing the evidence from road pricing demonstrations[J]. Transportation Research Part A, 2005, 39(4): 279-293.
|
[11] |
周伟. 旅客时间价值[J]. 交通运输工程学报, 2003, 3(3): 110-116. doi: 10.3321/j.issn:1671-1637.2003.03.025
Zhou Wei. Time value of passengers[J]. Journal of Traffic and Transportation Engineering, 2003, 3(3): 110-116. (in Chinese) doi: 10.3321/j.issn:1671-1637.2003.03.025
|
[12] |
仝允恒. 城市快速交通线项目的最优票价与政府补偿[J]. 系统工程理论与实践, 2001, 21(4): 88-91. doi: 10.3321/j.issn:1000-6788.2001.04.018
Tong Yun-huan. Optimal fare pricing for urban rapid transport line project and government compensation[J]. Systems Engineering—Theory and Practice, 2001, 21(4): 88-91. (in Chinese) doi: 10.3321/j.issn:1000-6788.2001.04.018
|
[13] |
俞礼军, 严海, 严宝杰. 最大熵原理在交通流统计分布模型中的应用[J]. 交通运输工程学报, 2001, 1(3): 91-94. doi: 10.3321/j.issn:1671-1637.2001.03.023
Yu Li-jun, Yan Hai, Yan Bao-jie. Maximum entropy method and its application in probability density function of traffic flow[J]. Journal of Traffic and Transportation Engineering, 2001, 1(3): 91-94. (in Chinese) doi: 10.3321/j.issn:1671-1637.2001.03.023
|
[14] |
Greenwood J A, Landwehr J M, Matalas N C. Probability weighted moments: definition and relation to parameters of several distributions expressible in inverse form[J]. Water Resources Research, 1979, 15(5): 49-54.
|
[15] |
Pandey M D. Direct estimation of quantile functions using the maximum entropy principle[J]. Structural Safety, 2000, 22(1): 61-79. doi: 10.1016/S0167-4730(99)00041-7
|
[16] |
Shore H. Simple approximations for the inverse cumulative function, the density function and the loss integral of the normal distribution[J]. Applied Statistics, 1982, 31(2): 108-114. doi: 10.2307/2347972
|
[17] |
HoskingJ R M, Wallis J R. Regional Frequency Analysis[M]. UK: Cambridge University Press, 1997.
|
[18] |
Hosking J R M. Parameter and quantile estimation for the generalized Pareto distribution[J]. Tecnometrics, 1987, 29(3): 39-49.
|
[19] |
Jaynes E T. Information theory and statistical mechanics Ⅰ[J]. Physical Review, 1957, 106(4): 620-630. doi: 10.1103/PhysRev.106.620
|
[20] |
Jaynes E T. Information theory and statistical mechanics Ⅱ[J]. Physical Review, 1957, 108(2): 171-190. doi: 10.1103/PhysRev.108.171
|
[21] |
Kadane J B. A moment problem for order statistics[J]. The Annals of Mathematical Statistics, 1971, 42(2): 45-51.
|
[22] |
MallowsCL. Boundsondistributionfunctionsintermsof expectations of order statistics[J]. The Annals of Probability, 1973, 1(2): 297-303.
|
[23] |
Shannon C E. A mathematical theory of communication[J]. Bell System Technology Journal, 1948, 27(4): 379-423.
|
[24] |
Shore J E, Johnson R W. Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy[J]. IEEE Transact Information Theory, 1980, 26(1): 26-37. doi: 10.1109/TIT.1980.1056144
|
[25] |
Wu N. The Maxi mum Entropy Method[M]. Berlin: Springer-Verlag, 1997.
|