ZHANG Jian, FAN Xiao-ping, HUANG Cai-lun, CHEN Te-fang. Fusion monitoring system of locomotive wheelset state[J]. Journal of Traffic and Transportation Engineering, 2008, 8(6): 13-19.
Citation: ZHANG Jian, FAN Xiao-ping, HUANG Cai-lun, CHEN Te-fang. Fusion monitoring system of locomotive wheelset state[J]. Journal of Traffic and Transportation Engineering, 2008, 8(6): 13-19.

Fusion monitoring system of locomotive wheelset state

More Information
  • Author Bio:

    ZHANG Jian (1974-), male, associate professor, doctoral student, +86-732-8290480, jzhang@hnust.edu.cn

    FAN Xiao-ping (1961-), male, professor, PhD, +86-731-8836423, xpfan@mail.csu.edu.cn

  • Received Date: 2008-07-15
  • Publish Date: 2008-12-25
  • In order to improve the accuracy of fault diagnosis and the uncertainty of current online condition monitoring methods for locomotive wheelset, a fusion monitoring system of locomotive wheelset was designed based on multi-sensor information fusion principle. The state of locomotive wheelset was monitored by using feature level fusion adaptive weighting algorithm, and the measured values were weighted adaptively to obtain the least-mean-square error of the measured values. The results computed by feature level fusion adaptive weighting algorithm, fuzzy data association algorithm, variable structure multiple-model estimation algorithm and BP nerve network(BPNN) algorithm were compared. Comparison result shows that when the fault occurs in the bearings of wheelset, the measured values are 22.047 0 and 21.025 0 respectively, while the estimation value from the fusion algorithm is 4.264 2, so the system has high reliability and better anti-disturbance.

     

  • loading
  • [1]
    应立军, 周书武, 亓琳, 等. 08-32捣固车电气系统在线监测与故障诊断系统[J]. 交通运输工程学报, 2004, 4(4): 34-36. doi: 10.3321/j.issn:1671-1637.2004.04.009

    YI NG Li-jun, ZHOUShu-wu, QI Lin, et al. On-line moni-toring and fault diagnosis systemfor electric system of 08-32tamper[J]. Journal of Traffic and Transportation Engineering, 2004, 4(4): 34-36. (in Chinese) doi: 10.3321/j.issn:1671-1637.2004.04.009
    [2]
    吴浩中, 王开文. 小波包-神经网络在摆式列车倾摆控制系统故障诊断中的应用[J]. 交通运输工程学报, 2003, 3(2): 27-30. doi: 10.3321/j.issn:1671-1637.2003.02.006

    WU Hao-zhong, WANG Kai-wen. Fault diagnosis using wavelet packet and neural networkintilting control systemof tilting train[J]. Journal of Traffic and Transportation Engi-neering, 2003, 3(2): 27-30. (in Chinese) doi: 10.3321/j.issn:1671-1637.2003.02.006
    [3]
    徐冬芳, 邓飞其. 基于多传感器数据融合的智能故障诊断系统[J]. 仪器仪表学报, 2004, 25(4): 404-406. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB2004S1174.htm

    XU Dong-fang, DENG Fei-qi. Artificial fault diagnosis sys-tem based on data fusion algorithm[J]. Chinese Journal of Scientific Instrument, 2004, 25(4): 404-406. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB2004S1174.htm
    [4]
    SKARI ATOS D, KARAKASIS K, TROCHIDIS A. Rail way wheel fault diagnosis using a fuzzy-logic method[J]. Applied Acoustics, 2004, 65(10): 951-966. doi: 10.1016/j.apacoust.2004.04.003
    [5]
    黄采伦. 列车轮对在线状态监测理论与方法研究[D]. 长沙: 中南大学, 2008.
    [6]
    HALL D L, LLI NAS J. Anintroduction to multisensor data fusion[J]. Proceedings of the IEEE, 1997, 85(1): 6-23. doi: 10.1109/5.554205
    [7]
    穆荣军, 崔乃刚. 多传感器优化融合模型的理论与仿真研究[J]. 仪器仪表学报, 2006, 27(6): 326-328. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB2006S1125.htm

    MU Rong-jun, CUI Nai-gang. Theoretical and si mulation re-search on opti mizinginformation fusion method for multisen-sor[J]. Chinese Journal of Scientific Instrument, 2006, 27(6): 326-328. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB2006S1125.htm
    [8]
    李若琼, 李欣, 董海鹰. 基于证据理论的多信息融合故障诊断研究[J]. 自动化仪表, 2006, 27(12): 1-4. doi: 10.3969/j.issn.1000-0380.2006.12.001

    LI Ruo-qiong, LI Xin, DONG Hai-ying. Study on the multi-in-formation fusion fault diagnosis based on evidential theory[J]. Process Automation Instrumentation, 2006, 27(12): 1-4. (in Chinese) doi: 10.3969/j.issn.1000-0380.2006.12.001
    [9]
    DASARATHY B V. Information fusion—a status update[J]. Information Fusion, 2007, 8(4): 335-336. doi: 10.1016/j.inffus.2007.04.004
    [10]
    BASIR O, YUAN Xiao-hong. Engine fault diagnosis based on multi-sensor information fusion using Dempster-Shafer evidence theory[J]. Information Fusion, 2007, 8(4): 379-386. doi: 10.1016/j.inffus.2005.07.003
    [11]
    OVASKA S J, VANLANDI NGHAM H F, KAMIYA A. Fusion of soft computing and hard computing in industrial applications: an overview[J]. IEEE Transactions on Systems Man and Cybernetics, Part C Applications and Reviews, 2002, 32(2): 72-79. doi: 10.1007/3-540-32391-0_40
    [12]
    黄丹, 黄采伦. 基于BP神经网络模型的电机故障诊断专家系统[J]. 自动化仪表, 2003, 24(3): 15-17. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDYB200303002.htm

    HUANG Dan, HUANG Cai-lun. BP neural network model based expert systemof fault diagnostic of electrical mechinery[J]. Process Automation Instrumentation, 2003, 24(3): 15-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDYB200303002.htm
    [13]
    HOU Zhi-jian, LI AN Zhi-wei, YAO Ye, et al. Data mining based sensor fault diagnosis and validation for building air conditioning system[J]. Energy Conversion and Manage-ment, 2006, 47(15/16): 2479-2490. https://www.sciencedirect.com/science/article/pii/S0196890405003031
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (365) PDF downloads(283) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return