WANG Hui, SHEN Gang. Small-scale similarity model of maglev-guideway coupling vibration[J]. Journal of Traffic and Transportation Engineering, 2014, 14(1): 49-56.
Citation: WANG Hui, SHEN Gang. Small-scale similarity model of maglev-guideway coupling vibration[J]. Journal of Traffic and Transportation Engineering, 2014, 14(1): 49-56.

Small-scale similarity model of maglev-guideway coupling vibration

More Information
  • Author Bio:

    WANG Hui(1983-), male, doctoral student, +86-21-69583693, wh053@163.com

    SHEN Gang(1963-), male, professor, PhD, +86-21-69582151, elsg@sh163.net

  • Received Date: 2013-09-18
  • Publish Date: 2014-02-25
  • Simplified as a model composed of single magnet and Bernoulli-Euler beam, the maglevguideway coupling vibration system with 5-state-variable feedback controller was designed to study the dynamics performances of the system in the time and frequency domain. A small-scale model of single magnet-guideway coupling vibration system was established based on the similarity theory, its similarity performances were studied, and the similarity relationship of the dynamics systems was analyzed. Study result shows that the maglev control method, calculating the controller output with the vibration informations of guideway's low order mode and magnet, is effective and can keep the system stable. The step response of the system indicates that the developed controller can stabilize the system in 0.27 swith the overshot 2%. The first 3 order modes can be used to accurately describe the dynamics characteristics of coupling vibration system. For analyzing the lower frequency characteristics of the system, the first 1 order mode is sufficient when the large difference among the lower frequencies exists. The small-scale model obtained according to the similarity theory is coincident with the original model in the dynamics performances.

     

  • loading
  • [1]
    LEE H W, KIM K C, LEE J. Review of maglev train technologies[J]. IEEE Transactions on Magnetics, 2006, 42 (7): 1917-1925. doi: 10.1109/TMAG.2006.875842
    [2]
    YAN Lu-guang. Suggestion for selection of maglev option for Beijing-Shanghai high-speed line[J]. IEEE Transactions on Applied Superconductivity, 2004, 14 (2): 936-939. doi: 10.1109/TASC.2004.830324
    [3]
    ZHOU Dan-feng, HANSEN C H, LI Jie, et al. Review of coupled vibration problems in EMS maglev vehicles[J]. International Journal of Acoustics and Vibration, 2010, 15 (1): 10-23.
    [4]
    YAU J D. Vibration control of maglev vehicles traveling over a flexible guideway[J]. Journal of Sound and Vibration, 2009, 321 (1/2): 184-200.
    [5]
    YAU J D. Response of a maglev vehicle moving on a series of guideways with differential settlement[J]. Journal of Sound and Vibration, 2009, 324 (3): 816-831.
    [6]
    WANG Hui, ZHONG Xiao-bo, SHEN Gang. A new maglev line system design and control strategy[J]. Journal of Tongji University: Natural Science, 2013, 41 (7): 1112-1118. (in Chinese). doi: 10.3969/j.issn.0253-374x.2013.07.026
    [7]
    CUI Peng, LI Jie, ZHANG Kun. Design of the suspension controller based on compensated feedback linearization[J]. Journal of the China Railway Society, 2010, 32 (2): 37-40. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201002009.htm
    [8]
    ZHOU Dan-feng, LI Jie, HANSEN C H. Application of least mean square algorithm to suppression of maglev trackinduced self-excited vibration[J]. Journal of Sound and Vibration, 2011, 330 (24): 5791-5811. doi: 10.1016/j.jsv.2011.07.021
    [9]
    KONG E, SONG J S, KANG B B, et al. Dynamic response and robust control of coupled maglev vehicle and guideway system[J]. Journal of Sound and Vibration, 2011, 330 (25): 6237-6253. doi: 10.1016/j.jsv.2011.05.031
    [10]
    WANG Hui, ZHONG Xiao-bo, SHEN Gang. Control strategy of maglev on elastic track[J]. Journal of Traffic and Transportation Engineering, 2013, 13 (5): 33-38, 46. (in Chinese). http://transport.chd.edu.cn/article/id/201305005
    [11]
    REN Yong-ming. The model test study of highway bridge on vehicles-bridge coupling vibration[D]. Nanchang: East China Jiaotong University, 2011. (in Chinese).
    [12]
    ZHENG Liang. Model test on vehicle-bridge coupled vibration for the long-span bridge with high-pier[D]. Xi'an: Chang'an University, 2011. (in Chinese).
    [13]
    GUI Shui-rong, CHEN Shui-sheng, REN Yong-ming. Study on vibration test of the scale-model system for highway bridge-vehicle interaction according to the similarity law[C]∥IEEE. 2011International Conference on Remote Sensing, Environment and Transportation Engineering. Nangjing: IEEE, 2011: 1735-1739.
    [14]
    MEISINGER R. Control systems for flexible maglev vehicles riding over flexible guideways[J]. Vehicle Dynamic System, 1975, 4 (2/3): 200-202.
    [15]
    TIAN Yu. Research on the vehicle-guideway coupled vibration control considering the relative position between the vehicle and the guideway[D]. Changsha: National University of Defense Technology, 2011. (in Chinese).

Catalog

    Article Metrics

    Article views (615) PDF downloads(2498) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return