| Citation: | QIN Na, WANG Kai-yun, JIN Wei-dong, HUANG Jin, SUN Yong-kui. Fault feature analysis of high-speed train bogie based on empirical mode decomposition entropy[J]. Journal of Traffic and Transportation Engineering, 2014, 14(1): 57-64. |
| [1] |
DING Jian-ming, LIN Jian-hui, ZHAO Jie, et al. Comparison method of energy transfer characteristics for fault detection of vehicle suspension spring[J]. Journal of Traffic and Transportation Engineering, 2013, 13 (4): 51-55, 62. (in Chinese). doi: 10.3969/j.issn.1671-1637.2013.04.008
|
| [2] |
YAN Qiu, LIU Yong-ming. The analysis of vehicle model establishment and malfunction based on MATLAB/Simulink[J]. Journal of East China Jiaotong University, 2012, 29 (5): 13-17. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT201205004.htm
|
| [3] |
HAN Qing-peng. Evaluation of human mental stress states based on wavelet package transformation and nonlinear analysis of EEG signals[J]. Journal of Vibration and Shock, 2013, 32 (2): 182-188. (in Chinese). doi: 10.3969/j.issn.1000-3835.2013.02.035
|
| [4] |
HUANG Juan, HUANG Chun, JIANG Ya-qun, et al. Identification method of fault characteristics in transmission lines based on wavelet packet and approximate entropy[J]. Chinese Journal of Scientific Instrument, 2012, 33 (9): 2009-2015. (in Chinese). doi: 10.3969/j.issn.0254-3087.2012.09.013
|
| [5] |
SESHADRINATH J, SINGH B, PARNIGRAHI B K. Vibration analysis based interturn fault diagnosis in induction machines[J]. IEEE Transactions on Industrial Informatics. 2014, 10 (1): 340-350.
|
| [6] |
WU Z H, HUANG N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[R]. Calverton: Center for Ocean-Land-Atmosphere Studies, 2009.
|
| [7] |
WU Z H, HUANG N E. A study of the characteristics of white noise using the empirical mode decomposition method[C]∥The Royal Society. Proceedings of the Royal Society, Series A: Mathematical, Physical and Engineering Sciences. London: The Royal Society, 2004: 1597-1611.
|
| [8] |
HU Ai-jun, MA Wan-li, TANG Gui-ji. Rolling bearing fault feature extraction method based on ensemble empirical mode decomposition and kurtosis criterion[J]. Proceedings of the CSEE, 2012, 32 (11): 106-111. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201211016.htm
|
| [9] |
LEI Ya-guo, HE Zheng-jia, ZI Yan-yang. EEMD method and WNN for fault diagnosis of locomotive roller bearings[J]. Expert Systems with Applications, 2011, 38 (6): 7334-7341.
|
| [10] |
ZVOKELJ M, ZUPAN S, PREBIL I. Non-linear multivariate and multiscale monitoring and signal denoising strategy using kernel principal component analysis combined with ensemble empirical mode decomposition method[J]. Mechanical Systems and Signal Processing, 2011, 25 (7): 2631-2653.
|
| [11] |
ZHANG Xue-qing, LIANG Jun. Chaotic time series prediction model of wind power based on ensemble empirical mode decomposition-approximate entropy and reservoir[J]. Acta Physica Sinica, 2013, 62 (5): 76-85. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201305009.htm
|
| [12] |
HUANG Jian, HU Xiao-guang, GENG Xin. An intelligent fault diagnosis method of high voltage circuit breaker based on improved EMD energy entropy and multi-class support vector machine[J]. Electric Power Systems Research, 2011, 81 (2): 400-407.
|
| [13] |
LABATE D, FORESTA F L, MORABITO G, et al. Entropic measures of EEG complexity in alzheimer's disease through a multivariate multiscale approach[J]. IEEE Sensors Journal, 2013, 13 (9): 3284-3292.
|
| [14] |
HE Zheng-you, CHEN Xiao-qing, LUO Guo-ming. Wavelet entropy measure definition and its application for transmission line fault detection and identification, partⅠ: definition and methodology[C]∥IEEE. 2006International Conference on Power System Technology. Chongqing: IEEE, 2006: 1-6.
|
| [15] |
AN Xue-li, JIANG Dong-xiang, LI Shao-hua, et al. Application of the ensemble empirical mode decomposition and Hilbert transform to pedestal looseness study of direct-drive wind turbine[J]. Energy, 2011, 36 (9): 5508-5520.
|