Citation: | WEN Xiao-xia, DU Zi-xue, ZUO Zhang-yong, LIANG Zhi-hua, ZHAO Da-yi. Influence of cornering stiffness of straddle-type monorail running wheel on tire wear under curve negotiating[J]. Journal of Traffic and Transportation Engineering, 2014, 14(2): 41-48. |
[1] |
MATSUNAKA R, OBA T, NAKAGAWA D, et al. International comparison of the relationship between urban structure and the service level of urban public transportation—a comprehensive analysis in local cities in Japan, France and Germany[J]. Transport Policy, 2013, 30 (2): 26-39.
|
[2] |
LEE C H, KAWATANI M, KIM C W, et al. Dynamic response of a monorail steel bridge under a moving train[J]. Journal of Sound and Vibration, 2006, 294 (3): 562-579. doi: 10.1016/j.jsv.2005.12.028
|
[3] |
MA Ji-bing, PU Qian-hui, HUO Xue-jin. Vehicle-bridge coupling vibration analysis of PC rail beam of straddle-type monorail transportation[J]. Journal of Southwest Jiaotong University, 2009, 44 (6): 806-811. (in Chinese). doi: 10.3969/j.issn.0258-2724.2009.06.002
|
[4] |
LIU Yu-yu, GE Yu-mei, YANG Yi-ren. The dynamic response analysis of the coupled system of the straddle type monorail train and the track beam[J]. China Railway Science, 2010, 31 (5): 21-27. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201005004.htm
|
[5] |
GODA K, NISHIGAITO T, HIRAISHI M, et al. A curving simulation for a monorail car[C]∥IEEE. Proceedings of the2000ASME/IEEE Joint Railroad Conference. New Jersey: IEEE, 2000: 171-177.
|
[6] |
REN Li-hui, ZHOU Jin-song, SHEN Gang. Dynamics model and simulation study of a straddle type monorail car[J]. China Railway Science, 2004, 25 (5): 26-32. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200405005.htm
|
[7] |
LIU F, SUTCLIFFE M P F, GRAHAM W R. Prediction of tread block forces for a free-rolling tyre in contact with a smooth road[J]. Wear, 2010, 269 (3): 672-683.
|
[8] |
KNISLEY S. A correlation between rolling tire contact friction energy and indoor tread wear[J]. Tire Science and Technology, 2002, 30 (2): 83-99. doi: 10.2346/1.2135251
|
[9] |
VEITH A G. The most complex tire-pavement interaction: tire wear[J]. ASTM Special Technical Publication, 1986 (929): 125-158.
|
[10] |
BRAGHIN F, CHELI F, MELZI S E, et al. Tyre wear model: validation and sensitivity analysis[J]. Mecanica, 2006, 41 (2): 143-156. doi: 10.1007/s11012-005-1058-9
|
[11] |
WU X D, ZUO S G, LEI L, et al. Parameter identification for a Lugre model based on steady-state tire conditions[J]. International Journal of Automotive Technology, 2011, 12 (5): 671-677.
|
[12] |
WAITERS M H. Uneven wear of vehicle tires[J]. Tire Science and Technology, 1993, 21 (4): 202-219.
|
[13] |
STALNAKER D, TURNER J, PAREKH D, et al, Indoor simulation of tire wear: some case studies[J]. Tire Science and Technology, 1996, 24 (2): 94-118.
|
[14] |
LEI X, NODA N A. Analyses of dynamic response of vehicle and track coupling system with random irregularity of track vertical profile[J]. Journal of Sound and Vibration, 2002, 258 (1): 147-165.
|