WU Jun, DING Shen-qi, YU Kui, LI Xiao-biao, MA Xi-qin. Scanning measurement method of buttock contour line at ship bottom[J]. Journal of Traffic and Transportation Engineering, 2014, 14(2): 62-67.
Citation: WU Jun, DING Shen-qi, YU Kui, LI Xiao-biao, MA Xi-qin. Scanning measurement method of buttock contour line at ship bottom[J]. Journal of Traffic and Transportation Engineering, 2014, 14(2): 62-67.

Scanning measurement method of buttock contour line at ship bottom

More Information
  • Author Bio:

    WU Jun (1981-), male, assistant researcher, PhD, +86-23-66800365, wujun_gd@126.com

  • Received Date: 2013-12-27
  • Publish Date: 2014-04-25
  • The single-point measurement principle of buttock contour line at ship bottom was analyzed.Acoustic measurement components were used to measure several draught points through reciprocating scanning, various parameters including ship sailing speed, scanning distance and scanning speed were effectively processed, and a new measurement method of buttock contour line at ship bottom based on single-beam sonar sensor was proposed.The acoustic receiving area was taken as constraint condition, the judgement criterion of ship bottom edge was carried out, the reconstruction formula of buttock contour line at ship bottom was deduced, and simulation test was carried out by using small scaled ship model.Test result shows that when ship sailing speed is 2 cm·s-1, 19 contour points are measured, the draughts of ship bow and poop are 2.91 and 3.09 cm respectively, and the trim is 0.18 cm.When ship sailing speed is 4 cm·s-1, 10 contour points are measured, the draughts of ship bow and poop are 2.79 and 3.15 cm respectively, and the trim is 0.36 cm.All the measured point data are of good consistency, and the sailing attitude is consistent well with the actual state.

     

  • loading
  • [1]
    TONG Fei, ZENG Wen. Research on voyage management issues of "super draft"[J]. China Water Transport, 2008, 8 (7): 32-33. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHOG200807018.htm
    [2]
    LUO Guo-qiang, ZHU Han-hua, CHEN Yi-qi, et al. Research on the holding measure instrument of ship sea gauge and load[J]. Ship and Ocean Engineering, 2007, 36 (6): 27-29. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHZC200706007.htm
    [3]
    CHEN Wen-wei, YU Ji, XU Jie, et al. A new measurement system of ship draft[J]. Shipbuilding of China, 2013, 54 (1): 166-171. (in Chinese). doi: 10.3969/j.issn.1000-4882.2013.01.021
    [4]
    SUN Guo-yuan, MAO Qi-huang. Study on automatic determining ship's draft and stability parameters[J]. Navigation of China, 2002 (2): 28-30. (in Chinese). doi: 10.3969/j.issn.1000-4653.2002.02.008
    [5]
    WANG Yong, YAN Chang-ping. Field detection technology and method of ship draft[J]. China Water Transport, 2008, 8 (8): 44-45. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHOG200808025.htm
    [6]
    LUO Jing, SHI Chao-jian, RAN Xin. A new method for automatic detection of ship waterline[J]. Ship and Ocean Engineering, 2012, 41 (1): 30-32, 37. (in Chinese). doi: 10.3963/j.issn.1671-7953.2012.01.009
    [7]
    XIONG Mu-di, ZHU Si-yin, LI Lu, et al. Research on data processing method of real-time detection system for dynamic ship draft[J]. Chinese Journal of Scientific Instrument, 2012, 33 (1): 173-180. (in Chinese). doi: 10.3969/j.issn.0254-3087.2012.01.026
    [8]
    LUO Ning. Research and application prospects of automatic detection device for inland vessels draft[J]. China Water Transport, 2012, 12 (2): 86-88. (in Chinese). doi: 10.3969/j.issn.1006-7973-C.2012.02.042
    [9]
    BI Fang-quan, LIANG Shan. Research on dynamic detection method of ships "super draft"[J]. China Water Transport, 2011, 11 (7): 1-3. (in chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZSUX201107004.htm
    [10]
    QI Na, TIAN Tan. Ray tracing in multi-beam swath bathymetry[J]. Journal of Harbin Engineering University, 2003, 24 (3): 245-248. (in Chinese). doi: 10.3969/j.issn.1006-7043.2003.03.003
    [11]
    YUAN Yan-yi, LIU Xiao, XU Chao, et al. Underwater imaging technology based on multibeam sounding system[J]. Hydrographic Surveying and Charting, 2012, 32 (4): 29-32. (in Chinese). doi: 10.3969/j.issn.1671-3044.2012.04.009
    [12]
    OLIVEIRA A M, CLARKE J E. Extending the multibeam angular sector to improve seafloor classification[J]. Sea Technology, 2008, 49 (6): 17-25.
    [13]
    TIAN Xiao-dong, LIU Zhong. Modeling and simulation of underwater detection system based on imaging sonar[J]. Computer Simulation, 2006, 23 (11): 176-179. (in Chinese). doi: 10.3969/j.issn.1006-9348.2006.11.045
    [14]
    WU Jun, DING Shen-qi, YU Kui, et al. Research on detection method for ship's draft measurement[J]. Hydro-Science and Engineering, 2013 (5): 83-88. (in Chinese). doi: 10.3969/j.issn.1009-640X.2013.05.013
    [15]
    LANZERSDORFER J. Use of the acoustic transit time method to determine the random uncertainty of planar velocity parameters in water[J]. Flow Measurement and Instrumentation, 2013, 34 (12): 27-33.
    [16]
    CHOO Y M, SEONG W J. Analysis of acoustic channels with a time-evolving sinusoidal surface[J]. Applied Acoustics, 2014, 78 (4): 28-32.
    [17]
    MEYER M, HERMAND J P, BERRADA M, et al. Remote sensing of Tyrrhenian shallow waters using the adjoint of a full-field acousticpropagation model[J]. Journal of Marine Systems, 2009, 78 (6): 339-348.
    [18]
    LABORRET S, FROHLY J, RIVART F. Evolution of an1MHz ultrasonic cavitation bubble field in a chopped irradiation mode[J]. Ultrasonics Sonochemistry, 2006, 13 (4): 287-294. doi: 10.1016/j.ultsonch.2005.04.004
    [19]
    KIM B N, YOON S W. Nonlinear parameter estimation in water-saturated sandy sediment with difference frequency acoustic wave[J]. Ultrasonics, 2009, 49 (4/5): 438-445.

Catalog

    Article Metrics

    Article views (810) PDF downloads(886) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return