DING Jian-ming, LIN Jian-hui, WANG Han, HUANG Chen-guang, ZHAO Jie. Performance parameter estimation method of high-speed train based on Rao-Blackwellised particle filter[J]. Journal of Traffic and Transportation Engineering, 2014, 14(3): 52-57.
Citation: DING Jian-ming, LIN Jian-hui, WANG Han, HUANG Chen-guang, ZHAO Jie. Performance parameter estimation method of high-speed train based on Rao-Blackwellised particle filter[J]. Journal of Traffic and Transportation Engineering, 2014, 14(3): 52-57.

Performance parameter estimation method of high-speed train based on Rao-Blackwellised particle filter

More Information
  • Author Bio:

    DING Jian-ming (1981-), male, assistant researcher, PhD, +86-28-87600558, fdingjianming@126.com

  • Received Date: 2014-02-07
  • Publish Date: 2014-06-25
  • In order to solve the nonlinear problems caused in augmenting the state vector of the performance parameters of high-speed train, a method of parameter estimation based on RaoBlackwellised particle filter (RBPF) was developed.Under the framework of Rao-Blackwellised (RB) principle, the probabilistic model of parameter estimation was divided.The Kalman filter (KF) was applied for the prediction time step and measurement update of linear state block and the RBPF was applied for the prediction time step and measurement update of nonlinear parameter block to realize the dynamic estimation.Through theoretical analysis and parameter estimation example of high-speed train, the validity of RBPF method for parameter dynamic estimation was verified.Analysis result shows that compared with the classical extended KF (EKF) method, RBPF method has the characteristics of initial immunity and algorithm stability.RBPF method shows its good engineering applicability for the minor parameter estimation error which is less than 5%, and inexistence of estimation deviation.

     

  • loading
  • [1]
    DING Jian-ming, LIN Jian-hui, ZHAO Jie, et al. Comparison method of energy transfer characteristics for fault detection of vehicle suspension spring[J]. Journal of Traffic and Transportation Engineering, 2013, 13 (4): 51-55, 62. (in Chinese). doi: 10.3969/j.issn.1671-1637.2013.04.008
    [2]
    CHI Mao-ru, ZHANG Wei-hua, ZENG Jing, et al. Study of suspension parameter of high speed passenger car bogies[J]. Journal of Dalian Jiaotong University, 2007, 28 (3): 13-19. (in Chinese). doi: 10.3969/j.issn.1673-9590.2007.03.004
    [3]
    LIANG Shu-lin, PIAO Ming-wei, HAO Jian-hua, et al. Study on stability of the high-speed bogie based on three typical wheel treads[J]. China Railway Science, 2010, 31 (3): 57-63. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201003012.htm
    [4]
    MENG Hong, ZHAI Wan-ming, WANG Kai-yun, et al. Research and development of high performance bogie of locomotive[J]. Journal of the China Railway Society, 2005, 27 (2): 35-39. (in Chinese). doi: 10.3321/j.issn:1001-8360.2005.02.006
    [5]
    LEE S Y, CHENG Y C. Hunting stability analysis of highspeed railway vehicle trucks on tangent tracks[J]. Journal of Sound and Vibration, 2005, 282 (3/4/5): 881-898.
    [6]
    CHENG Y C, LEE S Y, CHEN H H. Modeling and nonlinear hunting stability analysis of high-speed railway vehicle moving on curved tracks[J]. Journal of Sound and Vibration, 2009, 324 (1/2): 139-160.
    [7]
    GHANEM R, SHINOZUKA M. Structural system identification 1: theory[J]. Journal of Engineering Mechanics, 1995, 121 (2): 255-264. doi: 10.1061/(ASCE)0733-9399(1995)121:2(255)
    [8]
    LI Ping, GOODALL R, KADIRKAMANATHAN V. Estimation of parameters in a linear state space model using a Rao-Blackwellised particle filter[J]. IEE Proceedings-Control Theory and Applications, 2004, 151 (6): 727-738. doi: 10.1049/ip-cta:20041008
    [9]
    LI Ping, GOODALL R, WESTON P, et al. Estimation of railway vehicle suspension parameters for condition monitoring[J]. Control Engineering Practice, 2007, 15 (1): 43-55. doi: 10.1016/j.conengprac.2006.02.021
    [10]
    BRUNI S, GOODALL R, MEI T X, et al. Control and monitoring for railway vehicle dynamics[J]. Vehicle System Dynamics, 2007, 45 (7): 743-779.
    [11]
    SONG Y, GRIZZLE J W. The extended Kalman filter as a local asymptotic observer for discrete-time nonlinear system[J]. Journal of Mathematical Systems, Estimation and Control, 1995, 5 (1): 59-78.
    [12]
    SCHÖN T, GUSTAFSSON F, NORDLUND P. Marginalized particle filters for mixed linear/nonlinear state-space models[J]. IEEE Transactions on Signal Processing, 2005, 53 (7): 2279-2288. doi: 10.1109/TSP.2005.849151
    [13]
    DOUCET A, GORDON N J, KRISHNAMURTHY V. Particle filters for state estimation of jump Markov linear systems[J]. IEEE Transactions on Signal Processing, 2001, 49 (3): 613-624. doi: 10.1109/78.905890
    [14]
    SATRIA M, BEST M C. State estimation of vehicle handling dynamics using non-linear robust extended adaptive Kalman filter[J]. Vehicle System Dynamics, 2004, 41 (S): 103-112.
    [15]
    ARULAMPALAM M S, MASKELL S, GORDON N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50 (2): 174-188. doi: 10.1109/78.978374

Catalog

    Article Metrics

    Article views (691) PDF downloads(783) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return