XIE Hai-hong, DAI Xu-hao, QI Yuan. Improved K-nearest neighbor algorithm for short-term traffic flow forecasting[J]. Journal of Traffic and Transportation Engineering, 2014, 14(3): 87-94.
Citation: XIE Hai-hong, DAI Xu-hao, QI Yuan. Improved K-nearest neighbor algorithm for short-term traffic flow forecasting[J]. Journal of Traffic and Transportation Engineering, 2014, 14(3): 87-94.

Improved K-nearest neighbor algorithm for short-term traffic flow forecasting

More Information
  • Author Bio:

    XIE Hai-hong (1963-), female, associate professor, +86-10-51687138, xiehaihong16@163.com

  • Received Date: 2014-01-13
  • Publish Date: 2014-06-25
  • The original K-nearest neighbor algorithm for short-term traffic flow forecasting was analyzed.Pattern distance search method was used to replace the original Euclidean distance search method, the multiple statistics regression model was introduced, an improved K-nearest neighbor algorithm for short-term traffic flow forecasting was put forward, and an example verification was carried out by using the traffic flow data from a certain section in Beijing.Test result indicates when Kis 23, the error of mean square, mean absolute error and average relative error of forecasting results are 31.43%, 4.17% and 0.27% respectively by using the improved K-nearest neighbor algorithm.By using the original K-nearest neighbor algorithm, the error of mean square, mean absolute error and average relative error of forecasting results are 33.33%, 4.40% and 0.28% respectively.By using the historical average model, the error of mean square, mean absolute error and average relative error of forecasting results are 46.20%, 11.40% and 0.48% respectively.The forecasting accuracy of the improved K-nearest neighbor algorithm is obviously higher than the other two algorithms.The improved K-nearest neighbor algorithm notonly increases searching efficiency, but also accurately reflects the real situation of traffic flow.

     

  • loading
  • [1]
    HE Guo-guang, LI Yu, MA Shou-feng. Discussion on shortterm traffic flow forecasting methods based on mathematical models[J]. Systems Engineering—Theory and Practice, 2000, 20 (12): 51-56. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL200012007.htm
    [2]
    SMITH B L, DEMETSKY M J. Traffic flow forecasting: comparison of modeling approaches[J]. Journal of Transportation Engineering, 1997, 123 (4): 261-266. doi: 10.1061/(ASCE)0733-947X(1997)123:4(261)
    [3]
    KREER J B. A comparison of predictor algorithms for computerized control[J]. Traffic Engineering, 1975, 45 (4): 51-56.
    [4]
    WILLIAMS B M, HOEL L A. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results[J]. Journal of Transportation Engineering, 2003, 129 (6): 664-672. doi: 10.1061/(ASCE)0733-947X(2003)129:6(664)
    [5]
    OKUTANI I, STEPHANEDES Y J. Dynamic prediction of traffic volume through Kalman filtering theory[J]. Transportation Research Part B: Methodological, 1984, 18 (1): 1-11. doi: 10.1016/0191-2615(84)90002-X
    [6]
    SIMON D, SIMON D L. Kalman filtering with inequality constraints for turbofan engine health estimation[J]. Control Theory and Applications, 2006, 153 (3): 371-378. doi: 10.1049/ip-cta:20050074
    [7]
    DONG Chun-jiao, SHAO Chun-fu, XIONG Zhi-hua, et al. Short-term traffic flow forecasting of road network based on Elman neural net work[J]. Journal of Transportation Systems Engineering and Information Technology, 2010, 10 (1): 145-151. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201001022.htm
    [8]
    WEI Wen, YU Li-jian, GONG Jiong. Short-time traffic flow prediction based on chaos and particle swarm optimized neural network[J]. Logistics Engineering and Management, 2010, 32 (2): 75-77. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SPCY201002031.htm
    [9]
    CHENG Xiang-jun, LIU Jun, MA Min-shu. Algorithm of short-term traffic flow forecasting using fractal theory[J]. Journal of Transportation System Engineering and Information Technology, 2010, 10 (4): 106-110. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201004017.htm
    [10]
    FAN Na, ZHAO Xiang-mo, DAI Ming, et al. Short-term traffic flow prediction model[J]. Journal of Traffic and Transportation Engineering, 2012, 12 (4): 114-119. (in Chinese). http://transport.chd.edu.cn/article/id/201204015
    [11]
    LIN De-hua, YUAN Zhen-zhou. Research on short-term traffic flow forecasting method based on IOWA operator[J]. Science Technology and Engineering, 2013, 13 (25): 7596-7600. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201325063.htm
    [12]
    ISHAK S, ALECSANDRU C. Optimizing traffic prediction performance of neural networks under various topological input and traffic condition setting[J]. Journal of Transportation Engineering, 2004, 130 (7): 452-465.
    [13]
    SMITH B L, WILLIAMS B M R, OSWALD K. Comparison of parametric and nonparametric models for traffic flow forecasting[J]. Transportation Research Part C: Emerging Technologies, 2002, 10 (4): 303-321.
    [14]
    GONG Xiao-yan, TANG Shu-ming. Integrated traffic flow forecasting and traffic incident detection algorithm based on non-parametric regression[J]. China Journal of Highway and Transport, 2003, 16 (1): 82-86. (in Chinese).
    [15]
    ZHOU Xiao-peng, FENG Qi, SUN Li-jun. Short-term traffic flow forecasting based on nearest neighbor algorithm[J]. Journal of Tongji University: Natural Science, 2006, 34 (10): 1494-1498. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200611014.htm
    [16]
    YU Bin, WU Shan-hua, WANG Ming-hua, et al. K-nearest neighbor model of short-term traffic flow forecast[J]. Journal of Traffic and Transportation Engineering, 2012, 12 (2): 105-111. (in Chinese). http://transport.chd.edu.cn/article/id/201202015
    [17]
    QU Li, LAN Shi-yong, ZHANG Jian-wei. Short-term traffic forecasting based on nonparametric regression and floating car data[J]. Computer Engineering and Design, 2013, 34 (9): 3298-3332. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ201309059.htm
    [18]
    LI Zhen-long, ZHANG Li-guo, QIAN Hai-feng. Review of the short-term traffic flow forecasting based on the non-parametric regression[J]. Journal of Transportation Engineering and Information, 2008, 6 (4): 34-39. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTGC200804009.htm
    [19]
    WANG Da, RONG Gang. Pattern distance of time series[J]. Journal of Zhejiang University: Engineering Science, 2004, 38 (7): 795-798. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC200407001.htm
    [20]
    WU Geng-feng, ZHOU Pei-ling, CHU Yue-chun, et al. Prediction based on phrase construction and its application in weather forecast[J]. Nature Magazine, 1999, 21 (2): 107-110. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ199902011.htm
    [21]
    ZHU Li, WU Jian-hua, HU Guang-shu. Analysis of heart rate variability signal based on Cao algorithm[J]. Space Medicine and Medical Engineering, 2009, 22 (2): 132-134. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HYXB200902013.htm
    [22]
    CHEN De-wang, GAO Hai-jun, CHEN Long, et al. Accuracy analysis of RTMS on urban freeway[J]. Journal of Highway and Transportation Research and Development, 2002, 19 (5): 122-124. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200205034.htm

Catalog

    Article Metrics

    Article views (766) PDF downloads(872) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return