| Citation: | SHI Huai-long, WU Ping-bo, CENG Jing, ZHANG Da-fu. Flexibility characteristics of suspension system for railway vehicle[J]. Journal of Traffic and Transportation Engineering, 2014, 14(4): 45-52. |
| [1] |
IWNICKI S. Handbook of Railway Vehicle Dynamics[M]. New Yorkt Taylor and Francis Group, 2006.
|
| [2] |
EICKHOFF B M, EVANS J R, MINNIS A J. A review of modelling methods for railway vehicle suspension components[J]. Vehicle System Dynamics, 1995, 24(6/7). 469-496.
|
| [3] |
LUO Ren, ZENG Jing, DAI Huan-yun, et al. Running adaptability of high-speed EMU[J]. Journal of Traffic and Transportation Engineering, 2011, 11(6): 37-43. (in Chinese). http://transport.chd.edu.cn/article/id/201106006
|
| [4] |
EVANS J, BERG M. Challenges in simulation of rail vehicle dynamics[J]. Vehicle System Dynamics, 2009, 47(8): 1023-1048. doi: 10.1080/00423110903071674
|
| [5] |
CHENG Zu-guo, SHEN Pei-de. A study of the antiroll-stabilizer used in the new-type double deck passenger coach[J]. Journal of the China Railway Society, 1993, 15(1): 9-14. (in Chinese). doi: 10.3321/j.issn:1001-8360.1993.01.002
|
| [6] |
CHI Mao-m, ZHANG Wei-hua, ZENG Jing, et al. Study of suspension parameter of high speed passenger car bogies[J]. Journal of Dalian Jiaotong University, 2007, 28(3): 13-19. (in Chinese). doi: 10.3969/j.issn.1673-9590.2007.03.004
|
| [7] |
LI Xue-liang, SHEN Gang. Research on the flexibility coefficient of rail vehicles[J]. Rolling Stock, 2011, 49(8): 4-6. (in Chinese). doi: 10.3969/j.issn.1002-7602.2011.08.002
|
| [8] |
JIANG Jian-dong, FU Mao-hai, LI Fu. Analysis of anti-roll torsion bar of passenger bogie[J]. Railway Locomotive and Car, 2004, 24(5): 4-7. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC200405001.htm
|
| [9] |
DUAN Hua-dong. A study of the impact on anti-rolling perform of railway vehicle by anti-roll bar[J]. Electric Locomotives and Mass Transit Vehicles, 2007, 30(5): 14-16. (in Chinese). doi: 10.3969/j.issn.1672-1187.2007.05.004
|
| [10] |
LIANG Xin, LUO Shi-hui, MA Wei-hua. Study of the impact ondynamics performance of metro cars by anti-rolling torsion bar[J]. Diesel Locomotives, 2011, 4(1): 5-8, 12. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LRJX201104003.htm
|
| [11] |
JASCHINSKI A, CHOLLET H, IWNICKI S, et al. The application of roller rigs to railway vehicle dynamics[J]. Vehicle System Dynamics, 1999, 31(5/6): 345-392.
|
| [12] |
UIC 505-5—1977, basic conditions to common leaflets 505-1to 505-4-notes on the preparation and provisions of these leaflets[S].
|
| [13] |
BS EN 14363—2005, railway application-testing for the acceptance of running characteristics of railway vehicles-testing of running behaviour and stationary tests[S].
|
| [14] |
CHEN Xiao, WU Xue-jie. Measurement method of flexibility coefficient of vehicles[J]. China Measurement and Test, 2010, 36(6): 27-29. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS201006010.htm
|
| [15] |
SHI Huai-long, WU Ping-bo, LUO Ren. Bogie rotation resistance torque characteristics of passenger car[J]. Journal of Traffic and Transportation Engineering, 2013, 13(4): 45-50. (in Chinese). http://transport.chd.edu.cn/article/id/201304007
|
| [16] |
WANG Kai-yun, HUANG Chao, ZHAI Wan-ming, et al. Progress on wheel-rail dynamic performance of railway curve negotiation[J]. Journal of Traffic and Transportation Engineering, English Edition, 2014, 1(3): 209-220.
|