Citation: | ZHAO Xuan, MA Jian, WANG Gui-ping. Composite braking control strategy of pure electric bus based on brake driving intention recognition[J]. Journal of Traffic and Transportation Engineering, 2014, 14(4): 64-75. |
[1] |
CAO Bing-gang, ZHANG Chuan-wei, BAI Zhi-feng, et al. Technology progress and trends of electric vehicles[J]. Journal of Xi'an Jiaotong University, 2004, 38(1): 1-5. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT200401001.htm
|
[2] |
CHAN C C, WONG Y S. The state of the art of electric vehicles technology[C]//IEEE. The 4th International Power Electronics and Motion Control Conference. Xi'an: Xi'an Jiaotong University Press, 2004: 46-57.
|
[3] |
SCHMIDT M, ISERMANN R, LENZEN B, et al. Potential of regenerative braking using an integrated starter alternator[J]. SAE Paper, 2000-01-1020.
|
[4] |
PENG Dong. Study on combined control of regenerative braking and anti-lock braking system for hybrid electric vehicle[D]. Shanghai: Shanghai Jiaotong University, 2007. (in Chinese).
|
[5] |
ZHANG J Z, CHEN X, ZHANG P J. Integrated control of braking energy regeneration and pneumatic anti-lock braking[J]. Journal of Automobile Engineering, 2010, 224(5): 587-610. doi: 10.1243/09544070JAUTO1307
|
[6] |
ZHANG Chang-li, ZHANG Ya-jun, YAN Mao-de, et al. Fuzzy control modeling and simulation of regenerative braking system for pure electric vehicle with dual-source energy storage system[J]. Journal of System Simulation, 2011, 23(2): 233-238. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201102004.htm
|
[7] |
WALKER A M, LAMPERTH M U, WILKINS S. On friction braking demand with regenerative braking[J]. SAE Paper, 2002-01-2581.
|
[8] |
ZHOU Lei, LUO Yu-gong, LI Ke-qiang, et al. Braking control of electric vehicles while coordinating regenerative and antilock brakes[J]. Journal of Tsinghua University: Science and Technology, 2009, 49(5): 728-732. (in Chinese). doi: 10.3321/j.issn:1000-0054.2009.05.027
|
[9] |
KO J, KIM J, LEE G, et al. Development of a co-operative control algorithm during regenerative braking for a fuel cell electric vehicle[C]//IEEE. The 7th IEEE Vehicle Power and Propulsion Conference. Chicago: IEEE, 2011: 7-13.
|
[10] |
ZHANG Yuan-cai, YU Zhuo-ping, XU Le, et al. A study on the strategy of braking force distribution for the hybrid braking system in electric vehicles based on braking intention[J]. Automotive Engineering, 2009, 31(3): 244-249. (in Chinese). doi: 10.3321/j.issn:1000-680X.2009.03.011
|
[11] |
MA Qi-zhen. Study on regenerative brake control algorithm based on braking intention identification[D]. Changchun: Jilin University, 2013. (in Chinese).
|
[12] |
SUN Lu, YU Ye, GU Wen-jun. Car ownership prediction method based on principal component analysis and hiddenMarkov model[J]. Journal of Traffic and Transportation Engineering, 2013, 13(2): 92-98. (in Chinese). http://transport.chd.edu.cn/article/id/201302014
|
[13] |
CAO Yuan, MA Lian-chuan, LI Wang. Monitoring method of safety computer condition for railway signal system[J]. Journal of Traffic and Transportation Engineering, 2013, 13(3): 107-112. (in Chinese). http://transport.chd.edu.cn/article/id/201303015
|
[14] |
YANG Qi, YANG Yun-feng, FENG Zhong-xiang, et al. Prediction method for passenger volume of city public transit based on grey theory and Markov model[J]. China Journal of Highway and Transport, 2013, 26(6): 169-175. (in Chinese). doi: 10.3969/j.issn.1001-7372.2013.06.023
|
[15] |
ZHANG Liang-li. Research on motorist's intention recognition for traffic safety precaution[D]. Wuhan: Wuhan University of Technology, 2011. (in Chinese).
|
[16] |
WANG Zhen. Real time gathering event detection based on layered hidden Markov model[D]. Guilin: Guilin University of Electronic Technology, 2010. (in Chinese).
|
[17] |
SATHYANARAYANA A, BOYRAZ P, HANSEN J H L. Driver behavior analysis and route recognition by hidden Markov models[C]//IEEE. 2008 IEEE International Conference on Vehicular Electronics and Safety. Columbus: IEEE, 2008: 276-281.
|
[18] |
ZONG Chang-fu, WANG Chang, YANG De-jun, et al. Driving intention identification and maneuvering behavior prediction of drivers on cornering[C]//IEEE. 2009 IEEE International Conference on Mechatronics and Automation. Changchun: IEEE, 2009: 4055-4060.
|
[19] |
33(8): 701-706. ZONG Chang-fu, WANG Chang, HE Lei, et al. Driving intention recognition based on double-layer HMM[J]. Automotive Engineering, 2011, 33(8): 701-706. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201108013.htm
|
[20] |
YIN An-dong, ZHAO Han, ZHANG Bing-li. Study on regenerative braking and control strategy for electric vehicles[J]. Journal of Hefei University of Technology: Natural Science Edition, 2008, 31(11): 1760-1763, 1777. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEFE200811009.htm
|
[21] |
ZHOU Yu-cai, CHEN Shi-an, WANG Jun-cheng. Two-acceleration-error-input proportional-integral-derivative control for vehicle active suspension[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1(3): 228-234.
|
[22] |
ZHAO Xuan. Study on control strategy for powertrain of pure electric bus[D]. Xi'an: Chang'an University, 2012. (in Chinese).
|
[23] |
YAO Zuo, WEI Heng, PERUGU H, et al. Sensitivity analysis of project level MOVES running emission rates for light and heavy duty vehicles[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1(2): 81-96.
|