Citation: | LI Zhi-bin, WANG Wei, LI Xiao-wei, WANG Hao. Spatial and temporal distribution characteristics of traffic accident for highway vehicle queue tail[J]. Journal of Traffic and Transportation Engineering, 2014, 14(4): 76-81. |
[1] |
ABDEL-ATY M, UDDIN N, PANDE A, et al. Predicting freeway crashes from loop detector data by matched case-control logistic regression[J]. Transportation Research Record, 2004(1897): 88-95.
|
[2] |
ABDEL-ATY M, UDDIN N, PANDE A. Split models for predicting multivehicle crashes during high-speed and lowspeed operating conditions on freeways[J]. Transportation Research Record, 2005(1908): 51-58.
|
[3] |
PANDE A, ABDEL-ATY M. Comprehensive analysis of the relationship between real-time traffic surveillance data and rear-end crashes on freeways[J]. Transportation Research Record, 2006(1953): 31-40.
|
[4] |
HOSSAIN M, MUROMACHI Y. Understanding crash mechanisms and selecting interventions to mitigate real-time hazards on urban expressways[J]. Transportation Research Record, 2011(2213): 53-62.
|
[5] |
XU Cheng-cheng, WANG Wei, LIU Pan. A genetic programming model for real-time crash prediction on freeways[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(2). 574-586. doi: 10.1109/TITS.2012.2226240
|
[6] |
ZHENG Z D, AHN S, MONSERE C M. Impact of traffic oscillations on freeway crash occurrences[J]. Accident Analysis and Prevention, 2010, 42(2): 626-636.
|
[7] |
CHUNGK, JANG K, OUM S, et al. Investigation of attributesof kinematic waves preceding traffic collisions[C]//TRB. The90th Annual Meeting of the Transportation Research Board. Washington DC. TRB, 2011.28-39.
|
[8] |
YEO H, JANG K, SKABARDONIS A. Impact of trafficstates on freeway collision frequency[C]//TRB. The 89thAnnual Meeting of the Transportation Research Board. Washington DC: TRB, 2010: 13-27.
|
[9] |
XU Cheng-cheng, LIU Pan, WANG Wei, et al. Evaluationof the impacts of traffic states on crash risks on freeways[J]. Accident Analysis and Prevention, 2012, 47(1): 162-171.
|
[10] |
LI Zhi-bin, AHN S, CHUNG K, et al. Surrogate safetymeasure for evaluating rear-end collision risk related to kine-matic waves near freeway recurrent bottlenecks[J]. AccidentAnalysis and Prevention, 2014, 64(4): 52-61.
|
[11] |
LI Zhi-bin, WANG Wei, CHEN Ruo-yun, et al. Evaluationof the impacts of speed variation on freeway traffic collisionsin various traffic states[J]. Traffic Injury Prevention, 2013, 14(8〉. 861-866.
|
[12] |
CASSIDYM J, BERTINI R L. Some traffic features of free-way bottlenecks[J]. Transportation Research Part B: Meth-odological, 1999, 33(1): 25-42. doi: 10.1016/S0191-2615(98)00023-X
|
[13] |
CHUNG K, RUDJANAKANOKNAD J, CASSIDY M J. Relation between traffic density and capacity drop at three freeway bottlenecks[J]. Transportation Research Part B: Methodological, 2007, 41(1): 82-95. doi: 10.1016/j.trb.2006.02.011
|
[14] |
SMIRNOVN V. Tables for estimating the goodness of fit of empirical distributions[J]. The Annals of Mathematical Statistics, 1948, 19(2): 279-281. doi: 10.1214/aoms/1177730256
|
[15] |
JUSTEL A, PENA D, ZAMAR R. A multivariate Kolmogorov-Smirnov test of goodness of fit[J]. Statistics and Probability Letters, 1997, 35(3): 251-259. doi: 10.1016/S0167-7152(97)00020-5
|
[16] |
CARLSON R C, PAPAMICHAIL I, PAPAGEORGIOU M, et al. Optimal mainstream traffic flow control of large-scale motorway networks[J]. Transportation Research Part C: Emerging Technologies, 2010, 18(2): 193-212. doi: 10.1016/j.trc.2009.05.014
|
[17] |
WANG Yi-bin, PAPAGEORGIOU M, SARROS G, et al. Feedback route guidance applied to a large-scale express ring road[J]. Transportation Research Record, 2006(1965): 79-88.
|
[18] |
LI Zhi-bin, LIU Pan, WANG Wei, et al. Development of a control strategy of variable speed limits to reduce rear-end collision risks near freeway recurrent bottlenecks[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(2): 866-877. doi: 10.1109/TITS.2013.2293199
|
[19] |
WU Yi-hu, YU Dan, YU Wei, et al. Double-layer ramp-metering model for incident congestion on expressway[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1(2): 129-137. doi: 10.1016/S2095-7564(15)30097-0
|