Citation: | ZHAO Hong-sheng, XU Xiao-hao, LI Rui, XIONG Zhi-yong, LI Dong-bin. Overview of research on flight technical error estimation in performance based navigation[J]. Journal of Traffic and Transportation Engineering, 2014, 14(5): 101-110. |
[1] |
DOC9613, international civil aviation organization, performance based navigation (PBN) manual[S].
|
[2] |
中国民用航空局. 中国民航基于性能的导航实施路线图[R]. 北京: 中国民用航空局, 2009. Civil Aviation Administration of China. China civil aviation performance based navigation implementation roadmap[R]. Beijing: Civil Aviation Administration of China, 2009. (in Chinese).
|
[3] |
MCRUER D T, HOFMANN L G, TEX H R, et al. New approaches to human-pilot/vehicle dynamic analysis[R]. Alexandria: NTIS, 1968.
|
[4] |
RICHARDSON D W. Determination of the impact of digital data broadcast on flight technical error[R]. Alexandria: NTIS, 1980.
|
[5] |
HAYASHI M. Hidden Markov models to identify pilot instrument scanning and attention patterns[C]//IEEE. 2003IEEE International Conference on Systems, Man, and Cybernetics. Manchester: IEEE, 2003: 2889-2896.
|
[6] |
MCRUER D T, KRENDEL E S. The human operator as a servo system element[J]. Journal of the Franklin Institution, 1959, 267 (5): 381-403. doi: 10.1016/0016-0032(59)90091-2
|
[7] |
MCRUER D T. Human dynamics in man-machine systems[J]. Automatica, 1980, 16 (3): 237-253. doi: 10.1016/0005-1098(80)90034-5
|
[8] |
MCRUER D T, MAGDALENO R E. Human pilot dynamics with various manipulators[R]. Alexandria: NTIS, 1966.
|
[9] |
BEKEY G A. The human operator as a sampled-data system[J]. IEEE Transactions on Human Factors in Electronics, 1962, 3 (2): 43-51.
|
[10] |
MCRUER D T, JEX H R. A review of quasi-linear pilot models[J]. IEEE Transactions on Human Factors in Electronics, 1967, 8 (3): 231-249.
|
[11] |
RASMUSSEN J. Skills, rules, and knowledge; signals, signs, and symbols, and other distinctions in human performance models[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1983, 13 (3): 257-266.
|
[12] |
KLEINMAN D L, BARON S, LEVISON W H. An optimal control model of human response, part Ⅰ: theory and validation[J]. Automatica, 1970, 6 (3): 357-369. doi: 10.1016/0005-1098(70)90051-8
|
[13] |
BARON S, KLEINMAN D L, LEVISON W H. An optimal control model of human response, part Ⅱ: prediction of human performance in a complex task[J]. Automatica, 1970, 6 (3): 371-383. doi: 10.1016/0005-1098(70)90052-X
|
[14] |
STAPLEFORD R L, MCRUER D T, MAGDALENO R E. Pilot describing function measurements in a multiloop task[J]. IEEE Transactions on Human Factors in Electronics, 1967, 8 (2): 113-125.
|
[15] |
KLEINMAN D L. Optimal control of linear systems with time-delay and observation noise[J]. IEEE Transactions on Automatic Control, 1969, 14 (5): 524-527. doi: 10.1109/TAC.1969.1099242
|
[16] |
LEVISON W H, BARON S, KLEINMAN D L. A model for human controller remnant[J]. IEEE Transactions on ManMachine Systems, 1969, 10 (4): 101-108. doi: 10.1109/TMMS.1969.299906
|
[17] |
THOMPSON P, MCRUER D. Comparison of the human optimal control and crossover models[C]//AIAA. Proceedings of AIAA Guidance, Navigation, and Control Conference. Minneapolis: AIAA, 1988: 1083-1090.
|
[18] |
DIAMANTIDES N D. A pilot analog for airplane pitch control[J]. Journal of the Aerospace Sciences, 1958, 25 (6): 361-370. doi: 10.2514/8.7687
|
[19] |
MAGDALENO R E, MCRUER D T. Experimental validation and analytical elaboration for models of the pilot & amp; amp; apos; s neuromuscular sub-system in tracking tasks[R]. Hawthorne: NASA, 1971.
|
[20] |
WIERWILLE W W. A theory for optimal deterministic characterization of time-varying human operator dynamics[J]. IEEE Transactions on Human Factors in Electronics, 1965, 6 (1): 53-61.
|
[21] |
MCDONNELL J D, JEX H R. A critical tracking task for man-machine research related to the operator & amp; amp; apos; s effective delay time. II. experimental effects of system input spectra, control stick stiffness, and controlled element order[R]. Washington DC: NASA, 1967.
|
[22] |
BARON S, ELKIND J I, KLEINMAN D L, et al. Application of optimal control theory to the prediction of human performance in a complex task[R]. Cambridge: Bolt Beranek and Newman Inc., 1970.
|
[23] |
COSTELLO R G, HIGGINS T J. An inclusive classified bibliography pertaining to modeling the human operator as an element in an automatic control system[J]. IEEE Transactions on Human Factors in Electronics, 1966, 7 (4): 174-181.
|
[24] |
HALL T, SOARES M. Analysis of localizer and glide slope flight technical error[C]//IEEE. Proceedings of the 27th Digital Avionics Systems Conference. Saint Paul: IEEE, 2008: 1-9.
|
[25] |
WILLIAMS D M, CONSIGLIO M C, MURDOCH J L, et al. Flight technical error analysis of the SATS higher volume operations simulation and flight experiments[C]//IEEE. Proceedings of the 24th Digital Avionics Systems Conference. Arlington: IEEE, 2005: 1-12.
|
[26] |
SCHNELL T, ETHERINGTON T, VOGL T, et al. Field evaluation of a synthetic vision information system onboard the NASA aries 757at Eagle County Regional Airport[C]//IEEE. Proceedings of the 21st Digital Avionics Systems Conference. Irivne: IEEE, 2002: 1-12.
|
[27] |
LEVY B S, SOM P, GREENHAW R. Analysis of flight technical error on straight, final approach segments[C]//ION. Proceedings of the ION 59th Annual Meeting. Albuquerque: ION, 2003: 456-467.
|
[28] |
ZHAO Hong-sheng, XU Xiao-hao, ZHANG Jun, et al. Lateral flight technical error model for performance based navigation[J]. Chinese Journal of Aeronautics, 2011, 24 (3): 329-336. doi: 10.1016/S1000-9361(11)60039-3
|
[29] |
ZHAO Hong-sheng, XU Xiao-hao, ZHANG Jun, et al. Model of flight technical error in symmetrical plane for performance based navigation[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2010, 28 (3): 246-254.
|
[30] |
ZHAO Hong-sheng, XU Xiao-hao, ZHANG Jun, et al. Extended estimation method for lateral flight technical error of perturbed system in performance based navigation[J]. Aerospace Science and Technology, 2013, 30 (10): 278-285.
|
[31] |
赵鸿盛. PBN导航中飞行技术误差的估计模型与方法研究[D]. 北京: 北京航空航天大学, 2012.
ZHAO Hong-sheng. Estimation models and methods of the flight technical error in performance based navigation[D]. Beijing: Beihang University, 2012. (in Chinese).
|
[32] |
SHOMBER H R. RNP capability of FMC equipped 737, generation 3[R]. Chicago: Boeing Company, 2002.
|
[33] |
MCRUER D T, GRAHAM D, KRENDEL E S, et al. Human pilot dynamics in compensatory systems: theory, models, and experiments with controlled element and forcing function variations[R]. Alexandria: NTIS, 1965.
|
[34] |
MCRUER D T, KRENDEL E S. The man-machine system concept[C]//IEEE. Proceedings of IRE. New York: IEEE, 1962: 1117-1123.
|
[35] |
MCDONNEL J D. A preliminary study of human operator behavior following a step change in the controlled element[J]. IEEE Transactions on Human Factors in Electronics, 1966, 7 (3): 125-128.
|
[36] |
LOOYE G H, BENNANI S. Design of a flight controller for the research civil aircraft model (RCAM) using mu-synthesis[R]. Alexandria: NTIS, 1996.
|
[37] |
徐肖豪, 赵鸿盛, 王振宇. 尾流间隔缩减技术综述[J]. 航空学报, 2010, 31 (4): 655-662. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201004002.htm
XU Xiao-hao, ZHAO Hong-sheng, WANG Zhen-yu. Overview of wake vortex separation reduction systems[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31 (4): 655-662. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201004002.htm
|
[38] |
HESS R A. Analyzing manipulator and feel system effects in aircraft flight control[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1990, 20 (4): 923-931. doi: 10.1109/21.105091
|
[39] |
HESS R A. Analysis of aircraft attitude control systems prone to pilot-induced oscillations[J]. Journal of Guidance, Control, and Dynamics, 1984, 7 (1): 106-112. doi: 10.2514/3.56363
|
[40] |
HESS R A. Prediction of pilot opinion ratings using an optimal pilot model[J]. Human Factors, 1977, 19 (5): 459-476. doi: 10.1177/001872087701900503
|
[41] |
MCRUER D T, KRENDEL E S. Dynamic response of human operators[R]. Cambridge: Massachusetts Institute of Technology, 1957.
|
[42] |
KRENDEL E S, MCRUER D T. A servomechanisms approach to skill development[J]. Journal of the Franklin Institute, 1960, 269 (1): 24-42. doi: 10.1016/0016-0032(60)90245-3
|
[43] |
HUNTLEY M S, TURNER J W, PALMER R. Flight technical error for category B non-precision approaches and missed approaches using non-differential GPS for course guidance[R]. Washington DC: Federal Aviation Administration, 1993.
|
[44] |
ANDERSON M R. A flight technical error model for nonstationary random turbulence[C]//AIAA. Proceedings of AIAA Guidance, Navigation, and Control Conference. Montreal: AIAA, 2001: 1-8.
|
[45] |
赵鸿盛. 空中交通中的尾流大涡数值模拟及消散预测算法研究[D]. 天津: 中国民航大学, 2008.
ZHAO Hong-sheng. Large eddy simulation and dissipation prediction algorithm research of wake vortex of air traffic[D]. Tianjin: Civil Aviation University of China, 2008. (in Chinese).
|
[46] |
赵鸿盛, 徐肖豪. 一种尾流消散动态预测的改进算法[J]. 中国民航大学学报, 2008, 26 (1): 4-7. doi: 10.3969/j.issn.1001-5590.2008.01.002
ZHAO Hong-sheng, XU Xiao-hao. Improved algorithm of dynamic prediction of wake vortex dissipation[J]. Journal of Civil Aviation University of China, 2008, 26 (1): 4-7. (in Chinese). doi: 10.3969/j.issn.1001-5590.2008.01.002
|
[47] |
徐肖豪, 赵鸿盛, 杨传森, 等. 飞行进近中尾流的大涡数值模拟[J]. 南京航空航天大学学报, 2010, 42 (2): 179-184. doi: 10.3969/j.issn.1005-2615.2010.02.010
XU Xiao-hao, ZHAO Hong-sheng, YANG Chuan-sen, et al. Large eddy simulation of wake vortex during approach[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2010, 42 (2): 179-184. (in Chinese). doi: 10.3969/j.issn.1005-2615.2010.02.010
|
[48] |
ADAMS R J. An operational evaluation of flight technical error[R]. Alexandria: NTIS, 1975.
|
[49] |
ADAMS R J. Avionics certification requirements and procedures: error budgets for VOR/DME-RNAV, Loran-C, Omega and GPS including flight technical error[R]. Alexandria: NTIS, 1981.
|
[50] |
ELDREDGE D, CROOK W G, CRIMBRING W R. Simulation tests of flight technical error in 2D/3D area navigation (RNAV) using a multiple waypoint RNAV system with and without a flight director system[R]. Alexandria: NTIS, 1977.
|
[51] |
DONG Bing, LUO Xiao-li. Analysis of assessment method about the flight technical error based on Johnson curves[J]. Procedia Engineering, 2011, 17: 84-89. doi: 10.1016/j.proeng.2011.10.011
|
[52] |
FUJII N. A concept of CAT III GBAS requirement based on real-time flight technical error estimation[C]//ION. ION GNSS 20th International Technical Meeting of the Satellite Division. Fort Worth: ION, 2007: 453-460.
|
[53] |
GARG S, OUZTS P J. Integrated flight propulsion control design for a STOVL aircraft using H-infinity control design techniques[C]//IEEE. The 1999American Control Conference. Boston: IEEE, 1999: 568-576.
|
[54] |
BRAUN J F, MORTON W W, PECKHAM C G. Flight technical error of general aviation aircraft (statistical analysis of random errors from intended flight altitude of private aviation aircraft operating under visual and instrument flight rules)[R]. Alexandria: NTIS, 1981.
|