QIN Li-hui, LI Yan, WANG Zong-lin, AL-DULAIMI A F N. Deflection calculating method of damaged concrete beams strengthened with BFRP[J]. Journal of Traffic and Transportation Engineering, 2014, 14(6): 17-26.
Citation: QIN Li-hui, LI Yan, WANG Zong-lin, AL-DULAIMI A F N. Deflection calculating method of damaged concrete beams strengthened with BFRP[J]. Journal of Traffic and Transportation Engineering, 2014, 14(6): 17-26.

Deflection calculating method of damaged concrete beams strengthened with BFRP

More Information
  • Author Bio:

    QIN Li-hui (1977-), female, lecturer, PhD, +86-451-55191534, qinlh1977@126.com

  • Received Date: 2014-06-18
  • Publish Date: 2014-12-25
  • In order to accurately calculate the deflection of damaged concrete beam strengthened with basalt fiber reinforced plastics (BFRP) and provide theoretical foundation for the design and construction of the beam, according to different reinforcement ratios, eleven test beams with different amounts of strengthened BFRP sheet and loading methods were designed.The loaddeflection curves of different test beams were obtained.Under different pre-loading programs, the changing rules of deflection of un-strengthened beams, strengthened beams with one layer and two layers of BFRP sheet were analyzed respectively.The calculation formulas of mid-span deflection of damaged concrete beam strengthened with BFRP were presented, and the calculated deflections and measured values were compared.Analysis result indicates that the deflections of damaged concrete beams strengthened with BFRP are influenced by initial load and amount of BFRP sheet layer.The deflections of strengthened beams with initial load increase by 30%-94%compared with strengthened beams without initial load, and the deflections of strengthenedbeams with two layers of BFRP sheet increase by 19%-42% compared with strengthened beams with one layer of BFRP sheet.The impact of post-strain of BFRP should be considered in deflection calculation.The average value of the maximum difference between the calculated deflection and measured value is 7.26 mm.When the initial load is small and the reinforcement ratio is high, the calculated deflection of concrete beam is closer to the measured value, and the method can be used in the engineering practice.

     

  • loading
  • [1]
    LI Chun-xia. Flexural bearing and reliability of loaded concrete beams strengthened with CFRP[D]. Wuhan: Wuhan University of Technology, 2012. (in Chinese).
    [2]
    CHOI W C, YUN H D. Long-term deflection and flexural behavior of reinforced concrete beams with recycled aggregate[J]. Materials and Design, 2013, 51 (5): 742-750. https://www.sciencedirect.com/science/article/pii/S0261306913003671
    [3]
    CHA P, CARBON K. An efficient approach to approximate the deflection curve of an arbitrarily supported beam subjectto external loads[J]. International Journal of Mechanical Engineering Education, 2013, 41 (2): 146-168. doi: 10.7227/IJMEE.41.2.7
    [4]
    MOHAMMADHASSANI M, NEZAMABADI-POUR H, JUMAAT M Z, et al. Application of artificial neural networks (ANNs) and linear regressions (LR) to predict the deflection of concrete deep beams[J]. Computers and Concrete, 2013, 11 (3): 237-252. doi: 10.12989/cac.2013.11.3.237
    [5]
    MOHAMMADHASSANI M, NEZAMABADI-POUR H, JUMAAT M Z, et al. Application of the ANFIS model in deflection prediction of concrete deep beam[J]. Structural Engineering and Mechanics, 2013, 45 (3): 319-332.
    [6]
    GRIBNIAK V, CERVENKA V, KAKLAUSKAS G. Deflection prediction of reinforced concrete beams by design codes and computer simulation[J]. Engineering Structures, 2013, 56 (11): 2175-2186. https://www.sciencedirect.com/science/article/pii/S0141029613004124
    [7]
    CASTEL A, FRANÇOIS R. Calculation of the overall stiffness and irreversible deflection of cracked reinforced concrete beams[J]. Advances in Structural Engineering, 2013, 16 (12): 2035-2042. doi: 10.1260/1369-4332.16.12.2035
    [8]
    MARAÍ R, OLLER E, BAIRÁN J M, et al. Simplified method for the calculation of long-term deflections in FRPstrengthened reinforced concrete beams[J]. Composites Part B: Engineering, 2013, 45 (1): 1368-1376. doi: 10.1016/j.compositesb.2012.07.003
    [9]
    RAFI M M, NADJAI A. A suggested model for European code to calculate deflection of FRP reinforced concrete beams[J]. Magazine of Concrete Research, 2011, 63 (3): 197-214. doi: 10.1680/macr.9.00085
    [10]
    MIÀS C, TORRES L, TURON A, et al. Effect of material properties on long-term deflections of GFRP reinforced concrete beams[J]. Construction and Building Materials, 2013, 41 (4): 99-108. https://www.sciencedirect.com/science/article/pii/S0950061812008914
    [11]
    MIÀS C, TORRES L, TURON A, et al. Experimental study of immediate and time-dependent deflections of GFRP reinforced concrete beams[J]. Composite Structures, 2013, 96 (2): 279-285. https://dugi-doc.udg.edu/handle/10256/11963
    [12]
    KARA I F, DUNDAR C. Prediction of deflection of high strength steel fiber reinforced concrete beams and columns[J]. Computers and Concrete, 2012, 9 (2): 133-151. doi: 10.12989/cac.2012.9.2.133
    [13]
    MOHAMED H M, MASMOUDI R. Deflection prediction of steel and FRP-reinforced concrete-filled FRP tube beams[J]. Journal of Composites for Construction, 2011, 15 (3): 462-472. doi: 10.1061/(ASCE)CC.1943-5614.0000172
    [14]
    GAO Dan-ying, ZHANG Ming. Calculation method for stiffness of steel fiber reinforced high-strength concrete beams based on effective moment of inertia[J]. China Journal of Highway and Transport, 2013, 26 (5): 62-68, 139. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201305013.htm
    [15]
    YU Qiong, ZHANG Yan-yu. Study on deflection of RC beams strengthened with prestressed CFRP[J]. Structural Engineers, 2011, 27 (1): 139-143. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC201101024.htm
    [16]
    TANG Yi-jun. The simplification computation of entire loaddeflection curve of reinforced concrete beams strengthened with carbon fiber sheet[J]. Sichuan Building Science, 2012, 38 (3): 109-111. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ACZJ201203027.htm
    [17]
    WANG Wen-wei, ZHAO Guo-fan. Calculation of deflection of RC beams strengthened with GFRP sheets[J]. Sichuan Building Science, 2004, 30 (3): 33-36. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ACZJ200403012.htm
    [18]
    LI Chun-hong, WEI De-min, ZHENG Yu. Deflection estimation of concrete slab reinforced with GFRP bars with consideration of arching action[J]. Journal of Jiangsu University: Natural Science Edition, 2012, 33 (4): 474-479. (in Chinese). doi: 10.3969/j.issn.1671-7775.2012.04.020
    [19]
    ZHANG Yan, DUAN Shu-jin, ZHENG Gang. Study on deflection and crack width of double composite continuous beam considering concrete damge[J]. Journal of Shijiazhuang Tiedao University: Natural Science, 2011, 24 (3): 24-28. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SJZT201103005.htm
    [20]
    ZHOU Yong-jun, CAI Jun-zhe, SHI Xiong-wei, et al. Computing method of bridge impact factor based on weighted method[J]. Journal of Traffic and Transportation Engineering, 2013, 13 (4): 29-36. (in Chinese). http://transport.chd.edu.cn/article/id/201304005
    [21]
    XU Rong-qiao, CHEN De-quan. Modified reduced stiffness method for calculating the deflection of composite beams[J]. Engineering Mechanics, 2013, 30 (2): 285-291. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201302041.htm
    [22]
    JIANG Nan, SHEN Rui-li. Influence of rise-span ratio on structural stiffness of suspension bridge[J]. China Civil Engineering Journal, 2013, 46 (7): 90-97. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201307014.htm
    [23]
    ZHANG Yuan-hai, LIN Li-xia, LIU Yong. Influence of shear lag effect on deflection of box girder[J]. Chinese Journal of Computational Mechanics, 2012, 29 (4): 625-630. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201204026.htm
    [24]
    DU Jin-sheng, AU F T K. Moment of inertia of cracked sections and deflections for UPPC beams[J]. Engineering Mechanics, 2014, 31 (2): 170-176. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201402025.htm
    [25]
    MENG Gang, JIA Jin-qing, WANG Ji-zhong. Study on flexural behavior of prestressed ultra-high strength concrete beams[J]. Journal of Harbin Engineering University, 2013, 34 (5): 575-580. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201305008.htm
    [26]
    DING Min, JIANG Xiu-gen, MENG Shi-ping, et al. Global-local bending model and its application in simply supported compositebeam[J]. Engineering Mechanics, 2012, 29 (12): 233-240. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201212035.htm

Catalog

    Article Metrics

    Article views (671) PDF downloads(807) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return