HUANG Guan-hua, ZHANG Wei-hua, SONG Shu-qi, ZHU Shao-cheng, LIANG Shu-lin, WANG Xing-yu. Harmonic resonance analysis of gear transmission system for high-speed train[J]. Journal of Traffic and Transportation Engineering, 2014, 14(6): 51-58.
Citation: HUANG Guan-hua, ZHANG Wei-hua, SONG Shu-qi, ZHU Shao-cheng, LIANG Shu-lin, WANG Xing-yu. Harmonic resonance analysis of gear transmission system for high-speed train[J]. Journal of Traffic and Transportation Engineering, 2014, 14(6): 51-58.

Harmonic resonance analysis of gear transmission system for high-speed train

More Information
  • Author Bio:

    HUANG Guan-hua (1987-), male, doctoral student, +86-28-87634057, hgh7735@126.com

    ZHANG Wei-hua (1961-), male, professor, PhD, +86-28-87601068, tpl@swjtu.edu.cn

  • Received Date: 2014-07-21
  • Publish Date: 2014-12-25
  • The time-varying mesh stiffness of gear transmission system for high-speed train was calculated by using finite element method, the mesh stiffness and the transmission error were expressed by using Fourier series, the tooth backlash was fitted by using polynomial expression, and a bending-torsion coupling dynamics model of cylindrical helical gear transmission system was developed based on considering some nonlinear factors such as the time-varying mesh stiffness, the transmission error, the tooth backlash, etc.The nonlinear method of multiple scales was used to derive the harmonic resonance frequency factors of gear transmission system.The frequency response curves of gear transmission system were obtained by using numerical integration method to solve the dynamics equations of gear transmission system.The influences of static loads, dynamic loads and dampings on the harmonic resonance responses of gear transmission system were analyzed.Analysis result indicates that there are many harmonic resonance frequency factors in gear transmission system.A jumping phenomenon is found in thesuper-harmonic resonance response of gear transmission system.The double frequency vibrations are found under the harmonic excitations.The gear system has intense vibration when the meshing frequency is lower than the natural frequency.The reasonable operating speed of train should be set to avoid the harmonic resonances.

     

  • loading
  • [1]
    王建军, 李其汉, 李润方. 齿轮系统非线性振动研究进展[J]. 力学进展, 2005, 35 (1): 37-51. doi: 10.3321/j.issn:1000-0992.2005.01.005

    WANG Jian-jun, LI Qi-han, LI Run-fang. Research advances for nonlinear vibration of gear transmission systems[J]. Advances in Mechanics, 2005, 35 (1): 37-51. (in Chinese). doi: 10.3321/j.issn:1000-0992.2005.01.005
    [2]
    FARSHIDIANFAR A, SAGHAFI A. Global bifurcation and chaos analysis in nonlinear vibration of spur gear systems[J]. Nonlinear Dynamics, 2014, 75 (4): 783-806. doi: 10.1007/s11071-013-1104-4
    [3]
    YANG Zheng, SHANG Jian-zhong, LUO Zi-rong, et al. Nonlinear dynamics modeling and analysis of torsional springloaded antibacklash gear with time-varying meshing stiffness and friction[J]. Advances in Mechanical Engineering, 2013, 2013 (1): 1-17. doi: 10.1177/1464419314536888
    [4]
    张伟, 陈予恕. 含有参数激励非线性动力系统的现代理论的发展[J]. 力学进展, 1998, 28 (1): 1-16. doi: 10.3321/j.issn:1000-0992.1998.01.001

    ZHANG Wei, CHEN Yu-shu. Development of modern theory of nonlinear dynamical systems with parametric excitations[J]. Advances in Mechanics, 1998, 28 (1): 1-16. (in Chinese). doi: 10.3321/j.issn:1000-0992.1998.01.001
    [5]
    KAHRAMAN A, SINGH R. Interactions between timevarying mesh stiffness and clearance non-linearities in a geared system[J]. Journal of Sound and Vibration, 1991, 146 (1): 135-156. doi: 10.1016/0022-460X(91)90527-Q
    [6]
    KAHRAMAN A, BLANKENSHIP G W. Experiments on nonlinear dynamic behavior of an oscillator with clearance and periodically time-varying parameters[J]. Journal of Applied Mechanics, 1997, 64 (1): 217-226. doi: 10.1115/1.2787276
    [7]
    KAHRAMAN A, Effect of axial vibrations on the dynamics of a helical gear pair[J]. Journal of Vibration and Acoustics, 1993, 115 (1): 33-39.
    [8]
    KAHRAMAN A, SINGH R. Nonlinear dynamics of a geared rotor-bearing system with multiple clearances[J]. Journal of Sound and Vibration, 1991, 143 (3): 469-506. https://www.sciencedirect.com/science/article/pii/0022460X9190564Z
    [9]
    BENTON M, SEIREG A. Factors influencing instability and resonances in geared systems[J]. Journal of Mechanical Design, 1981, 103 (2): 372-378. doi: 10.1115/1.3254917
    [10]
    BENTON M, SEIREG A. A dynamic absorber for gear systems operating in resonance and instability regions[J]. Journal of Mechanical Design, 1981, 103 (2): 364-371. doi: 10.1115/1.3254916
    [11]
    RAGHOTHAMA A, NARAYANAN S. Bifurcation and chaos in geared rotor bearing system by incremental harmonic balance method[J]. Journal of Sound and Vibration, 1999, 226 (3): 469-492. doi: 10.1006/jsvi.1999.2264
    [12]
    SEYRANIAN A P, SOLEM F, PEDERSEN P. Multiparameter linear periodic systems: sensitivity analysis and applications[J]. Journal of Sound and Vibration, 2000, 229 (1): 89-111. doi: 10.1006/jsvi.1999.2478
    [13]
    BLANKENSHIP G W, KAHRAMAN A. Steady state forced response of a mechanical oscillator with combined parametric excitation and clearance type non-linearity[J]. Journal of Sound and Vibration, 1995, 185 (5): 743-765. doi: 10.1006/jsvi.1995.0416
    [14]
    BLANKENSHIP G W, SINGH R. A new gear mesh interface dynamic model to predict multi-dimensional force coupling and excitation[J]. Mechanism and Machine Theory, 1995, 30 (1): 43-57. doi: 10.1016/0094-114X(94)00018-G
    [15]
    BLANKENSHIP G W, SINGH R. Dynamic force transmissibility in helical gear pairs[J]. Mechanism and Machine Theory, 1995, 30 (3): 323-339. doi: 10.1016/0094-114X(94)00048-P
    [16]
    姚远, 张红军, 罗赟, 等. 机车传动系统扭转与轮对纵向耦合振动稳定性[J]. 交通运输工程学报, 2009, 9 (1): 17-20. http://transport.chd.edu.cn/article/id/200901004

    YAO Yuan, ZHANG Hong-jun, LUO Yun, et al. Torsionallongitudinal coupling vibration stability of drive system for locomotive[J]. Journal of Traffic and Transportation Engineering, 2009, 9 (1): 17-20. (in Chinese). http://transport.chd.edu.cn/article/id/200901004
    [17]
    孙涛, 沈允文, 孙智民, 等. 行星齿轮传动非线性动力学方程求解与动态特性分析[J]. 机械工程学报, 2002, 38 (3): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200203002.htm

    SUN Tao, SHEN Yu-wen, SUN Zhi-min, et al. Behavior of planetary gear train solution and dynamic behavior analysis[J]. Chinese Journal of Mechanical Engineering, 2002, 38 (3): 11-15. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200203002.htm
    [18]
    朱才朝, 黄泽好, 唐倩, 等. 风力发电齿轮箱系统耦合非线性动态特性的研究[J]. 机械工程学报, 2005, 41 (8): 203-207. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200508038.htm

    ZHU Cai-chao, HUANG Ze-hao, TANG Qian, et al. Analysis of nonlinear coupling dynamic characteristics of gearbox system about wind-driven generator[J]. Chinese Journal of Mechanical Engineering, 2005, 41 (8): 203-207. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200508038.htm
    [19]
    SIRICHAI S. Torsional properties of spur gears in mesh using nonlinear finite element analysis[D]. Perth: Curtin University of Technology, 1999.
    [20]
    王建军, 洪涛, 吴仁智, 等. 齿轮系统参数振动问题研究综述[J]. 振动与冲击, 1997, 16 (4): 69-73, 97. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ199704015.htm

    WANG Jian-jun, HONG Tao, WU Ren-zhi, et al. Researches on parametric vibration of gear transmission systems—a review[J]. Journal of Vibration and Shock, 1997, 16 (4): 69-73, 97. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ199704015.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (731) PDF downloads(927) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return