ZHANG Yu-hui, ZHANG Xian-min. Test methods of airport pavement and subjacent foundation void[J]. Journal of Traffic and Transportation Engineering, 2016, 16(6): 1-11.
Citation: ZHANG Yu-hui, ZHANG Xian-min. Test methods of airport pavement and subjacent foundation void[J]. Journal of Traffic and Transportation Engineering, 2016, 16(6): 1-11.

Test methods of airport pavement and subjacent foundation void

More Information
  • Author Bio:

    ZHANG Yu-hui(1984-), male, lecturer, PhD, +86-22-24092476, xueyingshuang@163.com

  • Received Date: 2016-07-01
  • Publish Date: 2016-12-25
  • The test results of heavy weight deflectometer(HWD), ground penetrating radar, surface wave and image were compared and analyzed contrastively, and the bottom voids of airport rigid pavement slab, foundation subsidence and void cavity deformation were identified.The spectrum characteristics at different void depths and positions were compared, the effectiveness and superiority of each pavement void test method based on stress wave and electromagnetic wave were studied, and the test accuracy was verified by field core-drilling test.Verification result indicates that the test data of traditional HWD are pavement surface displacements under load, and do not reflect the foundation subsidence and void deformation under pavement slab.The subsidence and void deformation in soil foundation can be reflected by surface wave test data, because the test depth is greater.The bottom void cavity under pavement slab can be determined by analyzing the properties of return wave from pavement slab bottom by using image test method.But the interval sampling is adopted by above three methods, field test is limited by the number of sampling points, which results in that the runway integrity representativeness of test data is insufficient, and the evaluation error from sampling interval can not be overcome.The continuous and large scale test with ground penetrating radar can beconducted, the test coverage is 100%, the coincidence rate of void between radar data and HWD data is 95%, and the test accuracy of void in hole bottom is 87.5% by core-drilling test with 8sample points.However, the quantitative analysis on void with radar is insufficient, surface wave test and image test are proved to be effective supplement and verification to pavement void testing and soil foundation cavity testing with radar.

     

  • loading
  • [1]
    朱才辉, 李宁. 黄土高填方地基中暗穴扩展对机场道面变形分析[J]. 岩石力学与工程学报, 2015, 34(1): 198-206. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201501022.htm

    ZHU Cai-hui, LI Ning. Analysis of airstrip deformation due to expansion of hidden cavities in loess filled high embankment[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(1): 198-206. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201501022.htm
    [2]
    刘军忠, 翁兴中, 张俊, 等. 应急机场土质道面疲劳变形特性模型试验[J]. 西南交通大学学报, 2014, 49(3): 412-418. doi: 10.3969/j.issn.0258-2724.2014.03.007

    LIU Jun-zhong, WENG Xing-zhong, ZHANG Jun, et al. Model experiment of fatigue deformation characteristic of emergency soil airfield pavement[J]. Journal of Southwest Jiaotong University, 2014, 49(3): 412-418. (in Chinese). doi: 10.3969/j.issn.0258-2724.2014.03.007
    [3]
    PURYEAR C I, CASTAGNA J P. Layer-thickness determination and stratigraphic interpretation using spectral inversion: theory and application[J]. Geophysics, 2008, 73(2): 37-48. doi: 10.1190/1.2838274
    [4]
    ZHOU Yue-feng, THAM L G, YAN R W M, et al. The mechanism of soil failures along cracks subjected to water infiltration[J]. Computers and Geosciences, 2014, 55(2): 330-341.
    [5]
    敦晓, 岑国平, 黄灿华, 等. 机场道面混凝土冻融破坏评价指标[J]. 交通运输工程学报, 2010, 10(1): 13-18. doi: 10.3969/j.issn.1671-1637.2010.01.003

    DUN Xiao, CEN Guo-ping, HUANG Can-hua, et al. Evaluation indices of freezing-thawing destruction for airfield runway concrete[J]. Journal of Traffic and Transportation Engineering, 2010, 10(1): 13-18. (in Chinese). doi: 10.3969/j.issn.1671-1637.2010.01.003
    [6]
    王观虎, 蔡良才, 邵斌, 等. 机场水泥混凝土道面使用寿命的改进灰色预测模型[J]. 交通运输工程学报, 2009, 9(3): 45-50. doi: 10.3321/j.issn:1671-1637.2009.03.008

    WANG Guan-hu, CAI Liang-cai, SHAO Bin, et al. Modified gray prediction model of service life for airport cement concrete pavement[J]. Journal of Traffic and Transportation Engineering, 2009, 9(3): 45-50. (in Chinese). doi: 10.3321/j.issn:1671-1637.2009.03.008
    [7]
    蔡良才, 王海服, 张罗利, 等. 基于累积损伤的机场道面剩余寿命预测模型[J]. 交通运输工程学报, 2014, 14(4): 1-6. http://transport.chd.edu.cn/article/id/201404001

    CAI Liang-cai, WANG Hai-fu, ZHANG Luo-li, et al. Prediction model of remaining life for airport pavement based on cumulative damage[J]. Journal of Traffic and Transportation Engineering, 2014, 14(4): 1-6. (in Chinese). http://transport.chd.edu.cn/article/id/201404001
    [8]
    谢春庆, 李天华, 徐鸿彪. 某机场道面脱空原因与处治措施[J]. 路基工程, 2012(1): 181-184, 187. doi: 10.3969/j.issn.1003-8825.2012.01.052

    XIE Chun-qing, LI Tian-hua, XU Hong-biao. Genesis analysis of foundation void under an airport runway and its treatment[J]. Subgrade Engineering, 2012(1): 181-184, 187. (in Chinese). doi: 10.3969/j.issn.1003-8825.2012.01.052
    [9]
    张强. 机场复合道面HWD弯沉的温度修正方法[J]. 西部交通科技, 2012(11): 61-65. doi: 10.3969/j.issn.1673-4874.2012.11.020

    ZHANG Qiang. Temperature correction method of HWD deflection in airport composite road surface[J]. Western China Communications Science and Technology, 2012(11): 61-65. (in Chinese). doi: 10.3969/j.issn.1673-4874.2012.11.020
    [10]
    谭悦, 凌建明, 袁捷, 等. 脱空对机场水泥混凝土道面荷载应力的影响[J]. 同济大学学报: 自然科学版, 2010, 38(4): 552-556, 568. doi: 10.3969/j.issn.0253-374x.2010.04.015

    TAN Yue, LING Jian-ming, YUAN Jie, et al. Influence of voids to loading stresses of airport cement concrete pavement[J]. Journal of Tongji University: Natural Science, 2010, 38(4): 552-556, 568. (in Chinese). doi: 10.3969/j.issn.0253-374x.2010.04.015
    [11]
    付代光, 刘江平, 周黎明, 等. 基于贝叶斯理论的软夹层多模式瑞雷波频散曲线反演研究[J]. 岩土工程学报, 2015, 37(2): 321-329. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201502020.htm

    FU Dai-guang, LIU Jiang-ping, ZHOU Li-ming, et al. Inversion of multimode Rayleigh-wave dispersion curves of soft interlayer based on Bayesian theory[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 321-329. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201502020.htm
    [12]
    刘远, 孙进忠, 赵体, 等. 强夯地基处理效果的多道瞬态瑞雷波检测[J]. 地球物理学进展, 2014, 29(6): 2910-2916. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201406063.htm

    LIU Yuan, SUN Jin-zhong, ZHAO Ti, et al. Quantitative evaluation of dynamic consolidation effect of foundation based on multi-channel transient Rayleigh wave method[J]. Progress in Geophysics, 2014, 29(6): 2910-2916. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201406063.htm
    [13]
    LI Cui-lin, DOSSO S E, DONG He-feng, et al. Bayesian inversion of multimode interface-wave dispersion from ambient noise[J]. IEEE Journal of Oceanic Engineering, 2012, 37(3): 407-416. doi: 10.1109/JOE.2012.2189922
    [14]
    李文灵, 黄真萍, 王福喜, 等. 瞬态面波与微震波波动勘测法的分析与对比[J]. 工程地球物理学报, 2015, 12(1): 96-100. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDQ201501019.htm

    LI Wen-ling, HUANG Zhen-ping, WANG Fu-xi, et al. The comparison between transient surface wave and micro-seismic wave exploration technology[J]. Chinese Journal of Engineering Geophysics, 2015, 12(1): 96-100. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCDQ201501019.htm
    [15]
    PRIOLO E. Earthquake ground motion simulation through the 2-D spectral element method[J]. Journal of Computational Acoustics, 2001, 9(4): 1561-1581.
    [16]
    MACIAS C C, LUKE B. Improved parameterization to invert Rayleigh-wave data for shallow profiles containing stiff inclusions[J]. Geophysics, 2007, 72(1): 1-10.
    [17]
    杨鸿凯, 车爱兰, 汤政, 等. 基于弹性波理论的高铁线下结构病害快速检测方法[J]. 上海交通大学学报, 2015, 49(7): 1010-1009, 1016. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201507017.htm

    YANG Hong-kai, CHE Ai-lan, TANG Zheng, et al. Elasticwave-based detection method for under line structure of highspeed railway[J]. Journal of Shanghai Jiaotong University, 2015, 49(7): 1010-1009, 1016. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201507017.htm
    [18]
    李炜光, 郑敏楠, 连城. 新型机场道面雾封层材料性能及施工技术研究[J]. 筑路机械与施工机械化, 2015, 32(11): 75-78, 83. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201511031.htm

    LI Wei-guang, ZHENG Min-nan, LIAN Cheng. Research on properties and construction technology of new material for fog seal coat of airport pavement[J]. Road Machinery and Construction Mechanization, 2015, 32(11): 75-78, 83. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX201511031.htm
    [19]
    肖都. 沥青混凝土机场跑道面层脱空探地雷达图像模拟及应用研究[J]. 物探化探计算技术, 2015, 37(1): 10-15. https://www.cnki.com.cn/Article/CJFDTOTAL-WTHT201501002.htm

    XIAO Du. Applied techniques of GPR simulation and survey for asphalt overlay debonding on runway[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2015, 37(1): 10-15. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WTHT201501002.htm
    [20]
    何炜琨. 基于探地雷达的机场场道质量监测关键技术研究[D]. 天津: 天津大学, 2012.

    HE Wei-kun. Enabling techniques for runways quality surveillence via ground penetrating radar[D]. Tianjin: Tianjin University, 2012. (in Chinese).
    [21]
    罗伟国. 基于探地雷达的沥青路面隐性探伤应用技术研究[D]. 西安: 长安大学, 2014.

    LUO Wei-guo. Research and application of asphalt pavement hidden flaw detection based on GPR technology[D]. Xi'an: Chang'an University, 2014. (in Chinese).
    [22]
    GIANNOPOULOS A. Modeling ground penetrating radar by GprMax[J]. Construction and Building Materials, 2005, 19(10): 755-762.
    [23]
    GAUNAURD G C, NGUYEN L H. Detection of landmines using ultra-wideband radar data and time-frequency signal analysis[J]. IEE Proceedings—Radar, Sonar and Navigation, 2004, 151(5): 307-316.
    [24]
    刘宗辉, 吴恒, 周东, 等. 频谱反演法在探地雷达隧道衬砌检测中的应用研究[J]. 岩土工程学报, 2015, 37(4): 711-717. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201504020.htm

    LIU Zong-hui, WU Heng, ZHOU Dong, et al. Application of spectrum inversion method in GPR signal processing for tunnel lining detection[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 711-717. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201504020.htm
    [25]
    黄忠来, 张建中. 利用探地雷达频谱反演层状介质几何与电性参数[J]. 地球物理学报, 2013, 56(4): 1381-1391. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201304034.htm

    HUANG Zhong-lai, ZHANG Jian-zhong. An inversion method for geometric and electric parameters of layered media using spectrum of GPR signal[J]. Chinese Journal of Geophysics, 2013, 56(4): 1381-1391. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201304034.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3650) PDF downloads(2923) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return