WANG Jun, LIU Fei-yu, WANG Pan, GENG Xue-yu. Cyclic shear dynamic properties of geotextile-sandy soil interfaces[J]. Journal of Traffic and Transportation Engineering, 2016, 16(6): 12-20.
Citation: WANG Jun, LIU Fei-yu, WANG Pan, GENG Xue-yu. Cyclic shear dynamic properties of geotextile-sandy soil interfaces[J]. Journal of Traffic and Transportation Engineering, 2016, 16(6): 12-20.

Cyclic shear dynamic properties of geotextile-sandy soil interfaces

More Information
  • Author Bio:

    WANG Jun(1980-), male, professor, PhD, +86-577-86689687, sunnystar1980@163.com

  • Received Date: 2016-08-25
  • Publish Date: 2016-12-25
  • A series of cyclic direct shear tests of soil-reinforcement interfaces were performed by using a large-scale direct shear device.Woven geotextile and nonwoven geotextile were used as reinforcement materials.Chinese ISO standard sand was used as soil mass.When the vertical stresses are 30, 60 and 90kPa respectively, the cyclic shear displacement amplitudes are 1, 3and5 mm respectively, and the sandy soil densities are 22%, 52% and 75% respectively, theirinfluences on the cyclic shear properties of soil-reinforcement interfaces were studied, and the development laws of peak shear stresses and the relationships of shear stresses and shear displacements in the processes of cyclic shear tests on two kinds of geotextile-sandy soil interfaces were analyzed.Study result indicates that the cyclic shear softening phenomena appear on woven/nonwoven geotextile-sand interfaces, and the softening laws are different.When the vertical stress increases from 30 kPa to 90 kPa, the peak shear stress of woven geotextile-sandy soil interface increases by 72.9%, and the peak shear stress of nonwoven geotextile-sand interface increases by 167.5%, so the influence of vertical stress on the cyclic shear properties of geotextile-sandy soil interface is obvious.When the shear displacement amplitudes are 1, 3and5 mm respectively, the peak shear stresses of woven geotextile-sandy soil interface are 25.9, 27.9and 29.8kPa respectively, and the peak shear stresses of nonwoven geotextile-sandy soil interface are 21.8, 23.8and 22.6kPa respectively, which shows that the peak shear stress of woven geotextile-sandy soil interface increases with the increase of shear displacement amplitude, while the peak shear stress of nonwoven geotextile-sandy soil interface firstly increases and then decreases.Under the three sandy soil densities, the differences among the peak shear stresses of woven geotextile-sandy soil interface do not exceed 2kPa, and the differences among the peak shear stresses of nonwoven geotextile-sandy soil interface do not exceed 3kPa, which shows that the sandy soil density has no significant influence on the cyclic shear properties of woven/nonwoven geotextile-sandy soil interfaces.

     

  • loading
  • [1]
    WU Jing-hai, CHEN Huan, WANG Ling-juan, et al. Study on soil interaction characteristics of geosynthetics[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(1): 89-93. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200101020.htm
    [2]
    WASTI Y, ÖZDÜZGÜN Z B. Geomembrane-geotextile interface shear properties as determined by inclined board and direct shear box tests[J]. Geotextiles and Geomembranes, 2001, 19(1): 45-57. doi: 10.1016/S0266-1144(00)00002-9
    [3]
    LIU Wei, WANG Yi-min, CHEN Ye-kai, et al. Research on large scale direct shear test for geocell reinforced soil[J]. Rock and Soil Mechanics, 2008, 29(11): 3133-3138, 3160. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200811053.htm
    [4]
    LIU C N, HO Y H, HUANG J W. Large scale direct shear tests of soil/PET-yarn geogrid interfaces[J]. Geotextiles and Geomembranes, 2009, 27(1): 19-30. doi: 10.1016/j.geotexmem.2008.03.002
    [5]
    FOX P J, ROSS J D, SURA J M, et al. Geomembrane damage due to static and cyclic shearing over compacted gravelly sand[J]. Geosynthetics International, 2011, 18(5): 272-279. doi: 10.1680/gein.2011.18.5.272
    [6]
    LI Jian, TANG Chao-sheng, WANG De-yin, et al. Single fiber pullout tests on interfacial shear strength of wave-shape fiber-reinforced soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1696-1704. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201409022.htm
    [7]
    SHI Jian-yong, QIAN Xue-de, ZHU Yue-bing. Experimental methods for interface behaviors of geosynthetics in landfills[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5): 688-692. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201005008.htm
    [8]
    LIU C N, ZORNBERG J G, CHEN T C, et al. Behavior of geogrid-sand interface in direct shear mode[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(12): 1863-1871. doi: 10.1061/(ASCE)GT.1943-5606.0000150
    [9]
    MORACI N, CARDILE G. Influence of cyclic tensile loading on pullout resistance of geogrids embedded in a compacted granular soil[J]. Geotextiles and Geomembranes, 2009, 27(6): 475-487. doi: 10.1016/j.geotexmem.2009.09.019
    [10]
    ZHOU Jian, WANG Jia-quan, KONG Xiang-li, et al. Mesoscopic study of the interface between sandy soil and geosynthetics[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1): 61-67. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201001012.htm
    [11]
    BRIANCON L, GIRARD H, GOURC J P. A new procedure for measuring geosynthetic friction with an inclined plane[J]. Geotextiles and Geomembranes, 2011, 29(5): 472-482. doi: 10.1016/j.geotexmem.2011.04.002
    [12]
    EID H T. Shear strength of geosynthetic composite systems for design of landfill liner and cover slopes[J]. Geotextiles and Geomembranes, 2011, 29(3): 335-344. doi: 10.1016/j.geotexmem.2010.11.005
    [13]
    LEE K M, MANJUNATH V R. Soil-geotextile interface friction by direct shear tests[J]. Canadian Geotechnical Journal, 2000, 37(1): 238-252. doi: 10.1139/t99-124
    [14]
    ABU-FARSAKH M, CORONEL J, TAO Ming-jiang. Effect of soil moisture content and dry density on cohesive soilgeosynthetic interactions using large direct shear tests[J]. Journal of Materials in Civil Engineering, 2007, 19(7): 540-549. doi: 10.1061/(ASCE)0899-1561(2007)19:7(540)
    [15]
    ANUBHAV S, BASUDHAR P K. Modeling of soil-woven geotextile interface behavior from direct shear test results[J]. Geotextiles and Geomembranes, 2010, 28(4): 403-408.
    [16]
    KHOURY C N, MILLER G A, HATAMI K. Unsaturated soil-geotextile interface behavior[J]. Geotextiles and Geomembranes, 2011, 29(1): 17-28.
    [17]
    TUNA S C, ALTUN S. Mechanical behaviour of sandgeotextile interface[J]. Scientia Iranica, 2012, 19(4): 1044-1051.
    [18]
    VIEIRA C S, LOPES M L, CALDEIRA L M. Sand-geotextile interface characterisation through monotonic and cyclic direct shear tests[J]. Geosynthetics International, 2013, 20(1): 26-38.
    [19]
    SAYEED M M A, RAMAIAH B J, RAWAL A. Interface shear characteristics of jute/polypropylene hybrid nonwoven geotextiles and sand using large size direct shear test[J]. Geotextiles and Geomembranes, 2014, 42(1): 63-68.
    [20]
    LIU Fei-yu, LIN Xu, WANG Jun. Influence of particle-size gradation on shear behavior of geosynthetics and sand interface[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(12): 2575-2582. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201312026.htm
    [21]
    LIU Fei-yu, WANG Pan, GENG Xue-yu, et al. Cyclic and post-cyclic behaviour from sand-geogrid interface large-scale direct shear tests[J]. Geosynthetics International, 2016, 23(2): 129-139.
    [22]
    LIU Fei-yu, LIN Xu, WANG Jun, et al. Effect of cyclic shear load on behavior of sand-geogrid interface[J]. China Journal of Highway and Transport, 2015, 28(2): 1-7. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201502002.htm
    [23]
    WANG Jun, WANG Pan, LIU Fei-yu, et al. Cyclic and postcyclic direct shear behavior of geogrid-sand interface with different soil densities[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 342-349. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201602023.htm
    [24]
    WANG Jun, LIU Fei-yu, WANG Pan, et al. Particle size effects on coarse soil-geogrid interface response in cyclic and post-cyclic direct shear tests[J]. Geotextiles and Geomembranes, 2016, 44(6): 854-861.
    [25]
    SU Zhi-he, XU Ying-ming. Application of geotextile in strengthening of old cement road[J]. Road Machinery and Construction Mechanization, 2007, 24(1): 30-32. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZLJX200701016.htm

Catalog

    Article Metrics

    Article views (3508) PDF downloads(2754) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return