YIN Chao, WANG Xiao-yuan, LIU Fei-fei, TIAN Wei, A MELANI. Risk probability assessment of seismic damage for embankment based on Monte Carlo method[J]. Journal of Traffic and Transportation Engineering, 2016, 16(6): 30-38.
Citation: YIN Chao, WANG Xiao-yuan, LIU Fei-fei, TIAN Wei, A MELANI. Risk probability assessment of seismic damage for embankment based on Monte Carlo method[J]. Journal of Traffic and Transportation Engineering, 2016, 16(6): 30-38.

Risk probability assessment of seismic damage for embankment based on Monte Carlo method

More Information
  • Author Bio:

    YIN Chao(1987-), male, lecturer, PhD, +86-533-2786036, yinchao1987611@163.com

  • Received Date: 2016-07-02
  • Publish Date: 2016-12-25
  • The embankment of Lianyungang-Horgos Expressway at K1125+470 was taken as research object, the seismic damage, embankment structure form and ground motion input were determined, the seismic vulnerability curves were drawn by combining incremental dynamic analysis and probabilistic seismic demand analysis, and the seismic vulnerability of embankment was evaluated.Embankment's seismic risk probability was defined as the convolution of seismic hazard and embankment seismic vulnerability, and its calculation method was put forward.The probability distribution model of seismic intensity and the relationship between seismic intensity and PGA were studied, and the probability distribution function of PGA was propssed in the next 50 years.The risk probabilities of embankment seismic were evaluated by using the Monte Carlo method for embankments with and without retaining wall, and the positive effect of retaining wall on improving embankment's seismic performance was verified.Analysis result shows that when PGA is 0.6g, the probability exceeding severe damage of embankment without retaining wall is 65.910%;When PGA is 0.8g, the probability is 99.995%, so the seismic vulnerability of embankment without retaining wall is high.The risk probability of exceeding severe damage for embankment without retaining wall is 29.07% and the risk probability of main integrity and minor damage is 31.97% in the next 50 years.In the next 50 years, the risk probability exceeding severe damage for embankment with retaining wall is 7.9% lower than the value without retaining wall, and the risk probability of main integrity and minor damage is 12.14%higher than the value without retaining wall, which indicates that retaining wall can significantly reduce the seismic damage risk of embankment.The acceptable risk probability exceeding severe damage in the next 50 years is defined as 40%in order for new embankments' aseismic design and existing embankments' aseismic reinforcement.

     

  • loading
  • [1]
    WANG Jian, YAO Ling-kan, CHEN Qiang. Research on failure mode of road embankment in Wenchuan great earthquake and deformation control of georgic reinforcement[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 3387-3394. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1116.htm
    [2]
    LIU Ni-na, LIU Jun-tao, HUANG Qiang-bing, et al. Seismic response of segmented metro tunnel with flexible joints passing through ground fissures[J]. Journal of Traffic and Transportation Engineering, 2015, 15(4): 34-42. (in Chinese). doi: 10.19818/j.cnki.1671-1637.2015.04.005
    [3]
    LIU Jing-wei, WANG Zhen-ming, XIE Fu-ren, et al. Seismic hazard assessment for greater North China from historical intensity observations[J]. Engineering Geology, 2013, 164(12): 117-130.
    [4]
    ZHOU Wang-bao, JIANG Li-zhong, LI Fang-fang, et al. Experiment of seismic performance for steel-concrete composite box-beam[J]. Journal of Traffic and Transportation Engineering, 2014, 14(6): 1-9. (in Chinese). http://transport.chd.edu.cn/article/id/201406001
    [5]
    MARUYAMA Y, YAMAZAKI F, MIZUNO K, et al. Fragility curves for expressway embankments based on damage datasets after recent earthquakes in Japan[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(11): 1158-1167. doi: 10.1016/j.soildyn.2010.04.024
    [6]
    TSOMPANAKIS Y, LAGAROS N D, PSARROPOULOS P N, et al. Simulating the seismic response of embankments via artificial neural networks[J]. Advances in Engineering Software, 2009, 40(8): 640-651. doi: 10.1016/j.advengsoft.2008.11.005
    [7]
    MELANI A, KHARE R, DHAKAL R P, et al. Seismic risk assessment of low rise RC frame structure[J]. Structures, 2016, 5: 13-22. doi: 10.1016/j.istruc.2015.07.003
    [8]
    BERTO L, SAETTA A, SIMIONI P. Structural risk assessment of corroding RC structures under seismic excitation[J]. Construction and Building Materials, 2012, 30(5): 803-813.
    [9]
    GU Yin, ZHONG Hua, ZHUO Wei-dong. Lower tower cable stayed bridge seismic vulnerability analysis[J]. China Civil Engineering Journal, 2012, 45(S1): 218-222. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2012S1043.htm
    [10]
    GU Yin, ZHENG Wen-ting, ZHUO Wei-dong. Analysis of seismic risk probability assessment of lower tower cable stayed bridge based on LHS-MC method[J]. Engineering Mechanics, 2013, 30(8): 96-102, 110. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201308017.htm
    [11]
    LU Da-gang, YU Xiao-hui. Theoretical study of probabilistic seismic risk assessment based on analytical functions of seismic fragility[J]. Journal of Building Structures, 2013, 34(10): 41-48. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201310005.htm
    [12]
    CHEN Kun, GAO Meng-tan. Controlling seismic collapse risk of general construction projects in China mainland[J]. Journal of Building Structures, 2015, 36(1): 23-29. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201501004.htm
    [13]
    SHEN Huai-zhi, JIN Feng, ZHANG Chu-han. Erformance based seismic fragility analysis of concrete gravity foundation system[J]. Engineering Mechanics, 2008, 25(12): 86-91. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200812018.htm
    [14]
    RAMANATHAN K, PADGETT J E, DESROCHES R. Temporal evolution of seismic fragility curves for concrete box-girder bridges in California[J]. Engineering Structures, 2015, 97: 29-46.
    [15]
    ZONG Liang, WANG Yuan-qing, YANG Sai-ni, et al. Research on highway bridges seismic damage assessment system for China based on HAZUS[J]. China Civil Engineering Journal, 2014, 47(S1): 263-268. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2014S1045.htm
    [16]
    WANG Xu, KANG Fei, LI Jun-jie. Back analysis of earthquake-induced permanent deformation parameters of earth-rock dams[J]. Rock and Soil Mechanics, 2014, 35(1): 279-286. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401042.htm
    [17]
    SUN Fa-quan. The vibration of highway subgrade filled physical simulation tests[D]. Chongqing: Chongqing Jiaotong University, 2010. (in Chinese).
    [18]
    TANG Chuan, ZHU Jing, LIANG Jing-tao. Emergency assessment of seismic landslide susceptibility: a case study of the 2008 Wenchuan earthquake affected area[J]. Earthquake Engineering and Engineering Vibration, 2009, 8(2): 207-217.
    [19]
    WU D, TESFAMARIAM S, STIEMER S F, et al. Seismic fragility assessment of RC frame structure designed according to modern Chinese code for seismic design of buildings[J]. Earthquake Engineering and Engineering Vibration, 2012, 11(3): 331-342.
    [20]
    GAO Xiao-wang, BAO Ai-bin. Probabilistic model and its statistical parameters for seismic load[J]. Earthquake Engineering and Engineering Vibration, 1985, 5(1): 13-22. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC198501001.htm
    [21]
    LIU Hui-xian, LU Rong-jian, CHEN Da-sheng, et al. A proposal scheme of revision of seismic intensity table in China[R]. Beijing: Institute of Mechanics, Chinese Academy of Sciences, 1981. (in Chinese).
    [22]
    WANG Qiang, WU Zi-yan, LIU Shu-kui. Seismic fragility analysis of highway bridges considering multi-dimensional performance limit state[J]. Earthquake Engineering and Engineering Vibration, 2012, 11(2): 185-193.
    [23]
    FENG Qing-hai, YUAN Wan-cheng. Method and application of seismic risk probability analysis for large-long span bridge based on IDA-MC[J]. Journal of Chang'an University: Natural Science Edition, 2010, 30(3): 60-65. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201003015.htm
    [24]
    YANG Hai-qing, YANG Xiu-ming, ZHOU Xiao-ping. Analysis of active earth pressure and rotational displacement at retaining wall under seismic loads[J]. Rock and Soil Mechanics, 2012, 33(S2): 139-144. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2012S2020.htm
    [25]
    QI Hong-liang. Study on evaluation system of highway natural disaster[D]. Xi'an: Chang'an University, 2011. (in Chinese).

Catalog

    Article Metrics

    Article views (3584) PDF downloads(2458) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return