DUAN Zun-lei, REN Guang, ZHANG Jun-dong, CAO Hui. Intelligent assessment for collaborative simulation training in ship engine room[J]. Journal of Traffic and Transportation Engineering, 2016, 16(6): 82-90.
Citation: DUAN Zun-lei, REN Guang, ZHANG Jun-dong, CAO Hui. Intelligent assessment for collaborative simulation training in ship engine room[J]. Journal of Traffic and Transportation Engineering, 2016, 16(6): 82-90.

Intelligent assessment for collaborative simulation training in ship engine room

More Information
  • Author Bio:

    DUAN Zun-lei(1981-), male, doctoral student, +86-411-84726983, admudzl@163.com

    REN Guang(1952-), male, professor, PhD, +86-411-84726983, reng@dlmu.edu.cn

  • Received Date: 2016-07-05
  • Publish Date: 2016-12-25
  • The assessment for simulation training in ship engine room was studied based on the theory of man-machine-environment system engineering.The system model called role-missionresource for collaborative training was constructed, and the intelligent assessment methods based on expert system and machine learning were proposed to improve the three dimensional engine room collaborative training system.The scene knowledge base, mission knowledge base and evaluation index system of simulation training in ship engine room were established.The assessment rules were extracted according to the expert experience and the evaluation criteria.The data were evaluated by using multiple fuzzy comprehensive evaluation and the weights were optimized by genetic algorithm.The structures of machine learning network were constructed appropriately according to the practical assessment problem.The computing steps were simplified by using the advantage of self-learning of BP neural network and deep learning algorithms.The normalized evaluation index was used as the input of evaluation model, and the evaluation resultswere used as the target data.The features of mass sample data were transformed by using sparse autocoder.Sample features were learned deeply and used for classification evaluation, thus the better evaluation model was achieved after repeated training.A comparative analysis of the intelligent assessment methods based on expert system and machine learning was conducted.Analysis result indicates that after the optimization of genetic algorithm, the assessment result error is smaller apparently.The average absolute error is 0.761 point, the average relative error is 0.983%, the mean square error is 0.938 point, the maximum error is 2.263 point, and the minimum error is 0.248 point.For the evaluation of simpler missions, the maximum absolute error of assessment result based on machine learning is 3.521 point, and the minimum absolute error is 0.304 point.The assessment errors of all indexes in the better assessment network based on deep learning are less than 1point.

     

  • loading
  • [1]
    JIANG De-zhi, ZHAO Xiao-ling. "Engine room resource management"using engine room simulator[J]. Navigation of China, 2011, 34(1): 22-25. (in Chinese). doi: 10.3969/j.issn.1000-4653.2011.01.006
    [2]
    FAN Min-yi, YANG Xin-ming, MA Qiang, et al. Application of computer brainpower evaluating in flight simulator training[J]. Journal of System Simulation, 2013, 25(8): 1811-1815. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201308021.htm
    [3]
    JIA Bao-zhu, LIN Ye-jin, CAO Hui, et al. Engine-room resource management training and assessment module in marine engineering simulator[J]. Navigation of China, 2013, 36(3): 28-33. (in Chinese). doi: 10.3969/j.issn.1000-4653.2013.03.007
    [4]
    CAO Hui, MA Yu-xin, JIA Bao-zhu. An intelligent evaluation system of marine engine room simulator based on fuzzy comprehensive evaluation[J]. Journal of Dalian Maritime University, 2015, 41(1): 104-108. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS201501022.htm
    [5]
    ZHANG Gui-chen. Design and implementation of an automatic grading system for practical examination in marine power station[J]. Navigation of China, 2010, 33(3): 27-30. (in Chinese). doi: 10.3969/j.issn.1000-4653.2010.03.007
    [6]
    ZHANG Qiao-fen, SUN Jian-bo, SHI Cheng-jun, et al. An automatic-evaluation algorithm for the operation examination of the novel marine engine simulation platform[J]. Journal of Harbin Engineering University, 2014, 35(6): 725-730. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201406013.htm
    [7]
    TAN Juan, WANG Sheng-chun. Research on prediction model for traffic congestion based on deep learning[J]. Application Research of Computers, 2015, 32(10): 2951-2954. (in Chinese). doi: 10.3969/j.issn.1001-3695.2015.10.016
    [8]
    XIA Chun-jiang, WANG Pei-liang, ZHANG Yuan. Prediction of moisture content of wood based on deep learning[J]. Journal of Hangzhou Dianzi University: Natural Sciences, 2015, 35(1): 31-35. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HXDY201501006.htm
    [9]
    JOO K H, PARK N H. Cooperative learning strategy with a mobile environment[J]. International Journal of Control and Automation, 2015, 8(10): 251-260. doi: 10.14257/ijca.2015.8.10.24
    [10]
    LU Dao-yi, JIA Bao-zhu, ZHANG Jun-dong. Marine engineering fault and training simulation system[J]. Ship Engineering, 2013, 35(2): 70-72, 75. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CANB201302021.htm
    [11]
    ZENG Hong, ZHANG Jun-dong, REN Guang, et al. Design and implementation of marine engine room three-dimensional visual simulation system[J]. Journal of System Simulation, 2014, 26(2): 363-368, 375. (in Chinese).
    [12]
    HE Qing, LI Ning, LUO Wen-juan, et al. A survey of machine learning algorithms for big data[J]. Pattern Recognition and Artificial Intelligence, 2014, 27(4): 327-336. (in Chinese). doi: 10.3969/j.issn.1003-6059.2014.04.007
    [13]
    DENG Jun, ZHANG Zi-xing, EYBEN F, et al. Autoencoderbased unsupervised domain adaptation for speech emotion recognition[J]. IEEE Signal Processing Letters, 2014, 21(9): 1068-1072. doi: 10.1109/LSP.2014.2324759
    [14]
    LEE C J, KANG S Y, KANG S G, et al. Development of key functions for flight simulator[J]. International Journal of Control and Automation, 2016, 9(1): 347-358. doi: 10.14257/ijca.2016.9.1.30
    [15]
    WANG Si-hua, TAN Guo-liang. Fuzzy evaluation of insulator pollution flashover based on improved EMD de-noising and entropy weight method[J]. Journal of Information and Computational Science, 2015, 12(15): 5687-5696. doi: 10.12733/jics20106801
    [16]
    NIE Wei, WU Ying, HU Da-bin, et al. Research of automatic scoring arithmetic for examination of engine room simulator[J]. Journal of Wuhan University of Technology: Transportation Science and Engineering, 2013, 37(4): 834-838. (in Chinese). doi: 10.3963/j.issn.2095-3844.2013.04.039
    [17]
    WANG Ying-jie, WANG Lei, RONG Qi-guo, et al. Evaluation index selection of debris flow based on entropy value theory[J]. Journal of Traffic and Transportation Engineering, 2014, 14(2): 28-33. (in Chinese). doi: 10.3969/j.issn.1671-1637.2014.02.006
    [18]
    CHAN K C C, LEE V, LEUNG H. Generating fuzzy rules for target tracking using a steady-state genetic algorithm[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(3): 189-200. doi: 10.1109/4235.661549
    [19]
    ZHANG Zhan-an, CAI Xing-guo. Determination of pumped storage capacity based on entropy[J]. Electric Machines and Control, 2014, 18(3): 34-39. (in Chinese). doi: 10.3969/j.issn.1007-449X.2014.03.006
    [20]
    SHENG Wei-guo, SWIFT S, ZHANG Lei-shi, et al. A weighted sum validity function for clustering with a hybrid niching genetic algorithm[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2005, 35(6): 1156-1167. doi: 10.1109/TSMCB.2005.850173
    [21]
    YANG Zhen-lin. A building management evaluation method based on BP neural networks[J]. The Open Automation and Control Systems Journal, 2015, 7(1): 1262-1267. doi: 10.2174/1874444301507011262
    [22]
    VINCENT P, LAROCHELLE H, LAJOIE I, et al. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11(12): 3371-3408.
    [23]
    CIRESAN D, MEIER U, MASCI J, et al. Multi-column deep neural network for traffic sign classification[J]. Neural Networks, 2012, 32(1): 333-338.
    [24]
    FISCHER A, IGEL C. Training restricted Boltzmann machines: an introduction[J]. Pattern Recognition, 2014, 47(1): 25-39. doi: 10.1016/j.patcog.2013.05.025
    [25]
    YIN Bao-cai, WANG Wen-tong, WANG Li-chun. Review of deep learning[J]. Journal of Beijing University of Technology, 2015, 41(1): 48-59. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD202103011.htm
    [26]
    SHIN H C, ORTON M R, COLLINS D J, et al. Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data[J]. IEEE Transactions on Software Engineering, 2013, 35(8): 1930-1943.

Catalog

    Article Metrics

    Article views (3493) PDF downloads(3563) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return