JIN Liang-an, LIU Wen-peng, GAO Zhan-sheng, ZHENG Zhi-lin. Influence of atmospheric stability on formation of artificial anoxic area over sea surface[J]. Journal of Traffic and Transportation Engineering, 2016, 16(6): 99-106.
Citation: JIN Liang-an, LIU Wen-peng, GAO Zhan-sheng, ZHENG Zhi-lin. Influence of atmospheric stability on formation of artificial anoxic area over sea surface[J]. Journal of Traffic and Transportation Engineering, 2016, 16(6): 99-106.

Influence of atmospheric stability on formation of artificial anoxic area over sea surface

More Information
  • Author Bio:

    JIN Liang-an(1966-), male, professor, PhD, +86-411-80855581, hylaohj@163.com

  • Received Date: 2016-06-01
  • Publish Date: 2016-12-25
  • Aiming at the formation of specified anoxic area by gas release in water, MATLAB and Gaussian plume model were used to simulate and analyze the change of gas concentrations at different locations under six atmospheric stability classes(A-F), and the corresponding isoconcentration curve and surface were drawn.The specific influence law of atmospheric stability on anoxic area formation was given. Analysis result shows that the geometric height of continuous point source is 0, the rising height is approximately 0, and the effective source height is approximately 0.The corresponding atmospheric stability classes of gas concentrations from low to high at the same downwind distance and the same sea surface location are A-F successively.The corresponding atmospheric stability classes of areas covered by isoconcentration curves and regions covered by isoconcentration surfaces are A-F successively.With the increase of atmospheric stability, the residence time and concentration of gas increase.So the tendency of diffusion close to sea surface is obvious, which is beneficial to the formation and maintenance of anoxic area with larger effective radius.

     

  • loading
  • [1]
    文华, 方芳, 萧汉梁. 海运安全评价方法[J]. 交通运输工程学报, 2001, 1(1): 95-98. doi: 10.3321/j.issn:1671-1637.2001.01.024

    WEN Hua, FANG Fang, XIAO Han-liang. The appraisal methods of marine safety[J]. Journal of Traffic and Transportation Engineering, 2001, 1(1): 95-98. (in Chinese). doi: 10.3321/j.issn:1671-1637.2001.01.024
    [2]
    张翔宇. 柴油机低温燃烧及排放特性的试验研究[D]. 天津: 天津大学, 2010.

    ZHANG Xiang-yu. The experimental investigation on combustion and emissions of low-temperature combustion of diesel engines[D]. Tianjin: Tianjin University, 2010. (in Chinese).
    [3]
    TIAN Wen-guo, YE Rong-hua. Effects of excess air on the performance of marine diesel engine[J]. Navigation of China, 2008, 31(1): 57-62.
    [4]
    刘文鹏, 金良安, 高占胜. 柴油机过量空气系数的防熄火要求[J]. 安防技术, 2015, 3(1): 1-6.

    LIU Wen-peng, JIN Liang-an, GAO Zhan-sheng. Requirements for the excess air coefficient to avoid flameout in diesel engine[J]. Journal of Security and Safety Technology, 2015, 3(1): 1-6. (in Chinese).
    [5]
    金良安, 刘阳娜, 苑志江, 等. 基于海水燃烧的海运安全防护技术[J]. 中国航海, 2013, 36(4): 100-103. doi: 10.3969/j.issn.1000-4653.2013.04.023

    JIN Liang-an, LIU Yang-na, YUAN Zhi-jiang, et al. A new ship protection technique based on burning sea water[J]. Navigation of China, 2013, 36(4): 100-103. (in Chinese). doi: 10.3969/j.issn.1000-4653.2013.04.023
    [6]
    刘阳娜, 金良安, 苑志江. 舰船新型水基燃烧防御技术[J]. 舰船科学技术, 2013, 35(10): 138-141. doi: 10.3404/j.issn.1672-7649.2013.10.032

    LIU Yang-na, JIN Liang-an, YUAN Zhi-jiang. Research on a new ship defense technology of water-based combustion[J]. Ship Science and Technology, 2013, 35(10): 138-141. (in Chinese). doi: 10.3404/j.issn.1672-7649.2013.10.032
    [7]
    LU Hao. Assessment of the modulated gradient model in decaying isotropic turbulence[J]. Theoretical and Applied Mechanics Letters, 2011, 1(4): 1-5.
    [8]
    MARROUF A A, ESSA K S M, EL-OTAIFY M S, et al. The influence of eddy diffusivity variation on the atmospheric diffusion equation[J]. Open Journal of Air Pollution, 2015, 4(3): 109-118. doi: 10.4236/ojap.2015.43011
    [9]
    平措. 大气污染扩散长期模型的应用研究[D]. 天津: 天津大学, 2006.

    PING Cuo. Application of atmospheric pollutant long-term diffusion model[D]. Tianjin: Tianjin University, 2006. (in Chinese).
    [10]
    TIRABASSI T, TAGLIAZUCCA M, ZANNETTI P. KAPPA-G, a non-Gaussian plume dispersion model: description and evaluation against tracer measurements[J]. Journal of the Air Pollution Control Association, 1986, 36(5): 592-596. doi: 10.1080/00022470.1986.10466095
    [11]
    鲁楠, 姚恩建, 潘龙, 等. 基于高斯扩散模型的北京市道路交通空气污染的敏感性分析[J]. 道路交通与安全, 2015, 15(2): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DLJA201502011.htm

    LU Nan, YAO En-jian, PAN Long, et al. Sensitivity analyses of the traffic-related air pollution in Beijing based on Gaussian dispersion models[J]. Road Traffic and Safety, 2015, 15(2): 55-60. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLJA201502011.htm
    [12]
    RAYNOR G S, MICHAEL P, BROWN R M, et al. Studies of atmospheric diffusion from a nearshore oceanic site[J]. Journal of Applied Meteorology, 1975, 14(6): 1080-1094. doi: 10.1175/1520-0450(1975)014<1080:SOADFA>2.0.CO;2
    [13]
    王丹. 道路运输有毒气体泄漏扩散模拟分析研究[D]. 成都: 西南交通大学, 2011.

    WANG Dan. Research on simulation and analysis of toxic gas dispersion from rode tank car[D]. Chengdu: Southwest Jiaotong University, 2011. (in Chinese).
    [14]
    RAMADAN A A, AL-SUDAIRAWI M, ALHAJRAF S, et al. Total SO2 emissions from power stations and evaluation of their impact in Kuwait using a Gaussian plume dispersion model[J]. American Journal of Environmental Sciences, 2008, 4(1): 1-12. doi: 10.3844/ajessp.2008.1.12
    [15]
    WILSON J D, FLESCH T K, SWATERS G E. Dispersion in sheared Gaussian homogeneous turbulence[J]. BoundaryLayer Meteorology, 1993, 62(1): 281-290.
    [16]
    冷海芹, 孙海燕, 吴泽洪, 等. 危化品气体泄漏事故的扩散模拟研究与实现[J]. 测绘科学, 2012, 37(4): 73-75, 78. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201204025.htm

    LENG Hai-qin, SUN Hai-yan, WU Ze-hong, et al. Research and implementation of diffusion simulation of hazardous gases leakage accidents[J]. Science of Surveying and Mapping, 2012, 37(4): 73-75, 78. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201204025.htm
    [17]
    PEREIRA L L, DA COSTA C P, VILHENA M T, et al. Puff models for simulation of fugitive hazardous emissions in atmosphere[J]. Journal of Environmental Protection, 2011, 2(2): 154-161. doi: 10.4236/jep.2011.22017
    [18]
    TSUANG B J, CHEN C L, LIN C H, et al. Quantification on the source/receptor relationship of primary pollutants and secondary aerosols by a Gaussian plume trajectory model: PartⅡ. Case study[J]. Atmospheric Environment, 2003, 37(28): 3993-4006. doi: 10.1016/S1352-2310(03)00472-2
    [19]
    HORST T W. A surface depletion model for deposition from a Gaussian plume[J]. Atmospheric Environment, 1977, 11(1): 41-46. doi: 10.1016/0004-6981(77)90204-9
    [20]
    HUQ P, FRANZESE P. Measurements of turbulence and dispersion in three idealized urban canopies with different aspect ratios and comparisons with a Gaussian plume model[J]. Boundary-Layer Meteorology, 2013, 147(1): 103-121. doi: 10.1007/s10546-012-9780-z
    [21]
    何佳, 宣爱国, 吴元欣, 等. 氯乙烯的泄漏扩散模拟[J]. 武汉工程大学学报, 2009, 31(12): 1-4. doi: 10.3969/j.issn.1674-2869.2009.12.001

    HE Jia, XUAN Ai-guo, WU Yuan-xin, et al. Model of drain diffusion of chloroethylene[J]. Journal of Wuhan Institute of Technology, 2009, 31(12): 1-4. (in Chinese). doi: 10.3969/j.issn.1674-2869.2009.12.001
    [22]
    DRAXLER R R. Determination of atmospheric diffusion parameters[J]. Atmospheric Environment, 1976, 10(2): 99-105. doi: 10.1016/0004-6981(76)90226-2
    [23]
    PORTÉ-AGEL F, PAHLOW M, MENEVEAU C, et al. Atmospheric stability effect on subgrid-scale physics for large-eddy simulation[J]. Advances in Water Resources, 2001, 24(9-10): 1085-1102. doi: 10.1016/S0309-1708(01)00039-2
    [24]
    MATSUI T, MASUNAGA H, KREIDENWEIS S M, et al. Satellite-based assessment of marine low cloud variability associated with aerosol, atmospheric stability, and the diurnal cycle[J]. Journal of Geophysical Research, 2006, 111(17): 1-16.
    [25]
    PONTIGGIA M, DERUDI M, BUSINI V, et al. Hazardous gas dispersion: a CFD model accounting for atmospheric stability classes[J]. Journal of Hazardous Materials, 2009, 171(1-3): 739-747. doi: 10.1016/j.jhazmat.2009.06.064
    [26]
    HWANG P A, SHEMDIN O H. Modulation of short waves by surface currents: a numerical solution[J]. Journal of Geophysical Research, 1990, 95(9): 16311-16318.
    [27]
    FREY M M, BROUGH N, FRANCE J L, et al. The diurnal variability of atmospheric nitrogen oxides(NO and NO2)above the Antarctic Plateau driven by atmospheric stability and snow emissions[J]. Atmospheric Chemistry and Physics, 2013, 13(6): 3045-3062. doi: 10.5194/acp-13-3045-2013
    [28]
    黄倩, 陈长和, 黄建国. 几种大气稳定度分类方法和相应扩散参数的比较[J]. 兰州大学学报: 自然科学版, 1996, 32(3): 143-150. doi: 10.3321/j.issn:0455-2059.1996.03.028

    HUANG Qian, CHEN Chang-he, HUANG Jian-guo. Comparison of some stability classifications and the corresponding diffusion parameters[J]. Journal of Lanzhou University: Natural Sciences, 1996, 32(3): 143-150. (in Chinese). doi: 10.3321/j.issn:0455-2059.1996.03.028
    [29]
    DAVIDSON G A. A modified power law representation of the Pasquill-Gifford dispersion coefficients[J]. Journal of the Air and Waste Management Association, 1990, 40(8): 1146-1147. doi: 10.1080/10473289.1990.10466761
    [30]
    SEIGNEUR C, PAI P, TOMBACH I, et al. Modeling of potential power plant plume impacts on Dallas-Fort Worth visibility[J]. Journal of the Air and Waste Management Association, 2000, 50(5): 835-848. doi: 10.1080/10473289.2000.10464121
    [31]
    GIFFORDF A. Use of routine meteorological observations for estimating atmospheric dispersion[J]. Nuclear Safety, 1961, 2(4): 47-51.
    [32]
    GIFFORDF A. Turbulent diffusion-typing schemes: a review[J]. Nuclear Safety, 1976, 17(1): 68-86.
    [33]
    GRIFFITHSR F. Errors in the use of the Briggs parameterization for atmospheric dispersion coefficients[J]. Atmospheric Environment, 1994, 28(17): 2861-2865. doi: 10.1016/1352-2310(94)90086-8
    [34]
    BRIGGS G A. A plume rise model compared with observations[J]. Journal of the Air Pollution Control Association, 1965, 15(9): 433-438. doi: 10.1080/00022470.1965.10468404
    [35]
    CHITUMALLA P K, HARRIS D, THURAISINGHAM B, et al. Emergency response applications: dynamic plume modeling and real-time routing[J]. IEEE Internet Computing, 2008, 12(1): 38-44. doi: 10.1109/MIC.2008.11
    [36]
    GREEN A E S, SINGHAL R P, VENKATESWAR R. Analytic extensions of the Gaussian plume model[J]. Journal of the Air Pollution Control Association, 1980, 30(7): 773-776. doi: 10.1080/00022470.1980.10465108
    [37]
    DEMAEL E, CARISSIMO B. Comparative evaluation of an Eulerian CFD and Gaussian plume models based on Prairie Grass dispersion experiment[J]. Journal of Applied Meteorology and Climatology, 2008, 47(3): 888-900. doi: 10.1175/2007JAMC1375.1
    [38]
    SMITH R J. A Gaussian model for estimating odour emissions from area sources[J]. Mathematical and Computer Modelling, 1995, 21(9): 23-29. doi: 10.1016/0895-7177(95)00048-7
    [39]
    NOVAK J H, TURNERD B. An efficient Gaussian-plume multiple-source air quality algorithm[J]. Journal of the Air Pollution Control Association, 1976, 26(6): 570-575. doi: 10.1080/00022470.1976.10470285
    [40]
    BADY M, KATO S, OOKA R, et al. Comparative study of concentrations and distributions of CO and NO in an urban area: Gaussian plume model and CFD analysis[J]. WIT Transactions on Ecology and the Environment, 2006, 86: 55-64.
    [41]
    BEAUCHEMIN S S, HAMSHARI H O, BAUER M A. Passive atmospheric diffusion with Gaussian fragmentation[J]. International Journal of Computers and Applications, 2009, 31(2): 97-108. doi: 10.1080/1206212X.2009.11441930
    [42]
    FAY J A, ESCUDIER M, HOULT D P. A correlation of field observations of plume rise[J]. Journal of the Air Pollution Control Association, 1970, 20(6): 391-397. doi: 10.1080/00022470.1970.10469418
    [43]
    张斌才, 赵军. 大气污染扩散的高斯烟羽模型及其GIS集成研究[J]. 环境监测管理与技术, 2008, 20(5): 17-19, 55. doi: 10.3969/j.issn.1006-2009.2008.05.005

    ZHANG Bin-cai, ZHAO Jun. Application of Gaussian plume model of atmosphere diffusion integrated with GIS[J]. The Administration and Technique of Environmental Monitoring, 2008, 20(5): 17-19, 55. (in Chinese). doi: 10.3969/j.issn.1006-2009.2008.05.005
    [44]
    王海燕, 张岐山. 基于改进高斯烟羽模型的废弃物处理设施负效应测度[J]. 中国管理科学, 2012, 20(2): 102-106. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGK201202016.htm

    WANG Hai-yan, ZHANG Qi-shan. A model for obnoxious effect of waste disposal facilities measurement based on improved Gaussian plume model[J]. Chinese Journal of Management Science, 2012, 20(2): 102-106. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGK201202016.htm
    [45]
    陈静锋, 柴瑞瑞, 闫浩, 等. 基于高斯烟羽模型的PM2.5污染源扩散规律模拟分析[J]. 系统工程, 2015, 33(9): 153-158. https://www.cnki.com.cn/Article/CJFDTOTAL-GCXT201509025.htm

    CHEN Jing-feng, CHAI Rui-rui, YAN Hao, et al. PM2.5pollution source diffusion law and simulation analysis based on the Gauss plume model[J]. Systems Engineering, 2015, 33(9): 153-158. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCXT201509025.htm
    [46]
    梁俊丽, 孔维华, 费文华, 等. 基于复杂地形的高斯烟羽模型改进[J]. 环境工程学报, 2016, 10(6): 3125-3129. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201606055.htm

    LIANG Jun-li, KONG Wei-hua, FEI Wen-hua, et al. Improvement of Gaussian plume model in complex terrain[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 3125-3129. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201606055.htm
    [47]
    康文超. 基于高斯烟羽模型的铁路易燃气体泄漏扩散分析[J]. 兰州交通大学学报, 2013, 32(6): 137-140. doi: 10.3969/j.issn.1001-4373.2013.06.030

    KANG Wen-chao. Analysis of leakage diffusion of flammable gas in railway transportation based on Gaussian plume model[J]. Journal of Lanzhou Jiaotong University, 2013, 32(6): 137-140. (in Chinese). doi: 10.3969/j.issn.1001-4373.2013.06.030
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3298) PDF downloads(2285) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return