GU Ming, ZHENG Lin-tao, LIU Zhong-hua. Infrared traffic image's enhancement algorithm combining dark channel prior and Gamma correction[J]. Journal of Traffic and Transportation Engineering, 2016, 16(6): 149-158.
Citation: GU Ming, ZHENG Lin-tao, LIU Zhong-hua. Infrared traffic image's enhancement algorithm combining dark channel prior and Gamma correction[J]. Journal of Traffic and Transportation Engineering, 2016, 16(6): 149-158.

Infrared traffic image's enhancement algorithm combining dark channel prior and Gamma correction

More Information
  • Author Bio:

    GU Ming(1983-), male, doctoral student, +86-10-64842276, gum11@mails.tsinghua.edu.cn

  • Received Date: 2016-05-11
  • Publish Date: 2016-12-25
  • In order to enhance the visual quality of infrared traffic image collected by the intelligent traffic monitoring equipment effectively, the image defogging method of visible light was introduced into traffic infrared image enhancement processing, and a new infrared traffic image's enhancement algorithm combining dark channel prior and Gamma correction was proposed.First, the original degraded infrared traffic image was processed by dark channel prior algorithm to obtain initially enhanced image.Then, the brightness of initially enhanced image was adjusted by Gamma correction algorithm.The image enhancement effects of the new algorithm and other common infrared image enhancement algorithms were compared.Test result shows that the information entropies of two original infrared traffic images are respectively 4.71 and 5.07 and respectively increase to 6.45 and 5.92 after being processed by the new algorithm.The standard deviations of gray scale for two original infrared traffic images are respectively 6.90 and 19.14 and respectively increase to 31.17 and 32.35 after being processed by the new algorithm.The information entropy computational value of new algorithm is more than the values of other algorithms.So the enhancement effect of the proposed algorithm is better than the enhancement effects of other common infrared image enhancement algorithms, and it can significantly improve the visual effect of infrared traffic image and lay good foundation for following processing and analysis of image.

     

  • YOU Zheng(1963-), male, professor, PhD, +86-10-62782308, yz-dpi@mail.tsinghua.edu.cn
  • loading
  • [1]
    BAI Li-gang, JIA Dong-dong. Application of infrared camera in traffic monitoring system[J]. China ITS Journal, 2009(11): 89-90. (in Chinese). doi: 10.3969/j.issn.1672-3333.2009.11.017
    [2]
    DU Yu-chuan, ZHANG Xiao-ming, LIU Cheng-long, et al. Visibility analysis for freeway based on comparison of ordinary and infrared images[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(4): 73-78. (in Chinese). doi: 10.3969/j.issn.1009-6744.2016.04.011
    [3]
    DING Li-wei, WANG Zong-Li, CHENG Ming-yang. Test research on detection ability of infrared guidance system for freeway traffic in fog[J]. Electro-Optic Technology Application, 2014, 29(2): 4-9, 21. (in Chinese). doi: 10.3969/j.issn.1673-1255.2014.02.002
    [4]
    LIN C L. An approach to adaptive infrared image enhancement for long-range surveillance[J]. Infrared Physics and Technology, 2011, 54(2): 84-91. doi: 10.1016/j.infrared.2011.01.001
    [5]
    NI Chao, LI Qi, XIA L Z. A novel method of infrared image denoising and edge enhancement[J]. Signal Processing, 2008, 88(6): 1606-1614. doi: 10.1016/j.sigpro.2007.12.016
    [6]
    LIANG Kun, MA Yong, XIE Yue, et al. A new adaptive contrast enhancement algorithm for infrared images based on double plateaus histogram equalization[J]. Infrared Physics and Technology, 2012, 55(4): 309-315. doi: 10.1016/j.infrared.2012.03.004
    [7]
    BAI Xiang-zhi, ZHOU Fu-gen, XUE Bin-dang. Image enhancement using multi scale image features extracted by top-hat transform[J]. Optics and Laser Technology, 2012, 44(2): 328-336. doi: 10.1016/j.optlastec.2011.07.009
    [8]
    LAI Rui, YANG Yin-tang, WANG Bing-jian, et al. A quantitative measure based infrared image enhancement algorithm using plateau histogram[J]. Optics Communications, 2010, 283(21): 4283-4288. doi: 10.1016/j.optcom.2010.06.072
    [9]
    DAI Shao-sheng, LIU Qin, LI Peng-fei, et al. Study on infrared image detail enhancement algorithm based on adaptive lateral inhibition network[J]. Infrared Physics and Technology, 2015, 68: 10-14. doi: 10.1016/j.infrared.2014.09.042
    [10]
    YUAN L T, SWEE S K, PING T C. Infrared image enhancement using adaptive trilateral contrast enhancement[J]. Pattern Recognition Letters, 2015, 54: 103-108. doi: 10.1016/j.patrec.2014.09.011
    [11]
    ZHAO Ju-feng, CHEN Yue-ting, FENG Hua-jun, et al. Infrared image enhancement through saliency feature analysis based on multi-scale decomposition[J]. Infrared Physics and Technology, 2014, 62: 86-93. doi: 10.1016/j.infrared.2013.11.008
    [12]
    BAI X Z, ZHOU F G. Top-hat selection transformation for infrared dim small target enhancement[J]. The Imaging Science Journal, 2010, 58(2): 112-117. doi: 10.1179/136821909X12581187860176
    [13]
    ZUO Chao, CHEN Qian, LIU Ning, et al. Display and detail enhancement for high-dynamic-range infrared images[J]. Optical Engineering, 2011, 50(12): 1-9.
    [14]
    LIU Ning, ZHAO Dong-xue. Detail enhancement for highdynamic-range infrared images based on guided image filter[J]. Infrared Physics and Technology, 2014, 67: 138-147. doi: 10.1016/j.infrared.2014.07.013
    [15]
    ZHAO Wen-da, XU Zhi-jun, ZHAO Jian, et al. Infrared image detail enhancement based on the gradient field specification[J]. Applied Optics, 2014, 53(19): 4141-4149. doi: 10.1364/AO.53.004141
    [16]
    ZHAO Ju-feng, CHEN Yue-ting, FENG Hua-jun, et al. Fast image enhancement using multi-scale saliency extraction in infrared imagery[J]. Optik, 2014, 125(15): 4039-4042. doi: 10.1016/j.ijleo.2014.01.117
    [17]
    VICKERS V E. Plateau equalization algorithm for real-time display of high-quality infrared imagery[J]. Optical Engineering, 1996, 35(7): 1921-1926. doi: 10.1117/1.601006
    [18]
    WANG Bing-jian, LIU Shang-qian, LI Qing, et al. A realtime contrast enhancement algorithm for infrared images based on plateau histogram[J]. Infrared Physics and Technology, 2006, 48(1): 77-82. doi: 10.1016/j.infrared.2005.04.008
    [19]
    HE Kai-ming, SUN Jian, Tang Xiao-ou. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353. doi: 10.1109/TPAMI.2010.168
    [20]
    ZHOU Yu-wei, CHEN Qiang, SUN Quan-sen, et al. Remote sensing image enhancement based on dark channel prior and bilateral filtering[J]. Journal of Image and Graphics, 2014, 19(2): 313-321. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201402018.htm
    [21]
    HUANG S C, CHENG F C, CHIU Y S. Efficient contrast enhancement using adaptive Gamma correction with weighting distribution[J]. IEEE Transactions on Image Processing, 2013, 22(3): 1032-1041. doi: 10.1109/TIP.2012.2226047
    [22]
    DENG Guang. A generalized gamma correction algorithm based on the SLIP model[J]. EURASIP Journal on Advances in Signal Processing, 2016, 2016(1): 1-15. doi: 10.1186/s13634-015-0293-z
    [23]
    RAHMAN S, RAHMAN M M, ABDULLAH-AL-WADUD M, et al. An adaptive gamma correction for image enhancement[J]. EURASIP Journal on Image and Video Processing, 2016, 2016(1): 1-13.
    [24]
    JIANG G, WONG C Y, LIN S C F, et al. Image contrast enhancement with brightness preservation using an optimal gamma correction and weighted sum approach[J]. Journal of Modern Optics, 2015, 62(7): 536-547. doi: 10.1080/09500340.2014.991358
    [25]
    GUPTA B, TIWARI M. Minimum mean brightness error contrast enhancement of color images using adaptive gamma correction with color preserving framework[J]. Optik, 2016, 127(4): 1671-1676. doi: 10.1016/j.ijleo.2015.10.068
    [26]
    FU Fu-qiang. Research and application of GAMMA calibration technology based on NURBS curve[D]. Xi'an: Xidian University, 2010. (in Chinese).
    [27]
    MA Lin, WANG Jun-hui, WANG Kuan-quan, et al. Adaptive Gamma correction method of iris image based on characteristic pattern[J]. Journal of Yanshan University, 2010, 34(2): 173-179. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DBZX201002019.htm
    [28]
    CHU Qing-cui, WANG Hua-bin, TAO Liang. Local adaptive Gamma correction method[J]. Computer Engineering and Applications, 2015, 51(7): 189-193, 208. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201507037.htm
    [29]
    LI Bo, ZHU Mei, FAN Zhong-kui, et al. An adaptive gamma enhancement algorithm for non-uniform illumination images[J]. Journal of Nanchang University: Natural Science, 2016, 40(3): 299-302. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NCDL201603017.htm
    [30]
    ZHANG Shu. Detection and recognition algorithm research of traffic signs in natural environments[D]. Wuhan: Wuhan University of Technology, 2014. (in Chinese).

Catalog

    Article Metrics

    Article views (3509) PDF downloads(2402) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return