WANG Wei-hua, WANG Wen-kai, FENG Bo, FAN Yong-kai. Dynamic coordinated control method of driving mode switch of parallel hybrid electric vehicle[J]. Journal of Traffic and Transportation Engineering, 2017, 17(2): 90-97.
Citation: WANG Wei-hua, WANG Wen-kai, FENG Bo, FAN Yong-kai. Dynamic coordinated control method of driving mode switch of parallel hybrid electric vehicle[J]. Journal of Traffic and Transportation Engineering, 2017, 17(2): 90-97.

Dynamic coordinated control method of driving mode switch of parallel hybrid electric vehicle

More Information
  • Author Bio:

    WANG Wei-hua(1971-), male, professor, PhD, +86-431-85094866, wwh_jlu@126.com

  • Received Date: 2016-11-23
  • Publish Date: 2017-04-25
  • In the driving mode switch of parallel hybrid electric vehicle (HEV), a control method of motor torque compensation was put forward based on the PID control of the difference of wheel angular velocity, and the control objective was that the demand torque of vehicle power did not fluctuate and vehicle speed steadily followed its expectation. The frequency-domain characteristics of HEV driveline in the mode switch were analyzed.Based on the difference between actual and expected angular velocity of wheel, the compensation torque was computed by the PID closed-loop control and provided by the permanent magnet synchronous motor (PMSM) to solve the dynamic coordinated control problem of two kinds of power sources in mode switch.A HEV dynamic coordinated control model was built by using two simulation platforms of AVL Cruise and MATLAB, and the control method was simulated and verified by using the control model.Simulation result shows that compared with the mode switch without dynamic coordinated control, when the dynamic coordinated control method is used, the response time of total output torque reduces from 0.90 s to 0.08 s, the control precision of total output torqueincreases by 11.1%, the precision of following expected speed increases by 8.0%, and vehicle's power performance increases by 4.4%.Obviously, the dynamic coordinated control method reduces the fluctuation of total output torque during HEV mode switch, improves the following precision of speed, and effectively guarantees the power performance and driving comfort of vehicle.

     

  • loading
  • [1]
    YAN Yun-bing, YAN Fu-wu, DU Chang-qing. Research on strategy and simulation for dynamic coordinative control of PHEV[J]. China Mechanical Engineering, 2010, 21 (2): 234-239. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201002027.htm
    [2]
    LI Meng-hai, LUO Yu-gong, YANG Dian-ge, et al. A dynamic coordinated control method for parallel hybrid electric vehicle based on model-matching-control[J]. Automotive Engineering, 2007, 29 (3): 203-207, 219. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC200703006.htm
    [3]
    WANG Qing-nian, JI Er-cong, WANG Wei-hua. Coordinated control for mode-switch of parallel hybrid electric vehicle[J]. Journal of Jilin University: Engineering and Technology Edition, 2008, 38 (1): 1-6. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY200801001.htm
    [4]
    BA Te, GAO Yin-han, ZENG Xiao-hua, et al. Mode-switch control scheme for hybrid electric vehicle[J]. Journal of Jilin University: Engineering and Technology Edition, 2016, 46 (1): 21-27. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201601004.htm
    [5]
    DAI Yi-fan, LUO Yu-gong, LI Ke-qiang, et al. Dynamic coordinated control for a full hybrid electric vehicle with single motor[J]. Automotive Engineering, 2011, 33 (12): 1007-1012. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201112002.htm
    [6]
    LI Ke, SUN Jing, LIU Xu-dong, et al. Torque coordinated control of PHEV based on the fuzzy and sliding mode method with load torque observer[C]∥IEEE. Proceedings of the33rd Chinese Control Conference. New York: IEEE, 2014: 7933-7937.
    [7]
    KIM H, KIM J, LEE H. Mode transition control using disturbance compensation for a parallel hybrid electric vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2011, 225 (2): 150-166.
    [8]
    WANG Jian, ZHOU Hong-liang, HE Zhen. Research on MPC based torque coordination control method for hybrid electric vehicle[J]. The Journal of New Industrialization, 2014, 4 (3): 29-37. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XXHG201403008.htm
    [9]
    WANG Lei, ZHANG Yong, SHU Jie, et al. Mode transition control for series-parallel hybrid electric bus using fuzzy adaptive sliding mode approach[J]. Journal of Mechanical Engineering, 2012, 48 (14): 119-127. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201214019.htm
    [10]
    NI Cheng-qun, ZHANG You-tong, ZHAO Qiang, et al. Dynamic torque control strategy of engine clutch in hybrid electric vehicle[J]. Journal of Mechanical Engineering, 2013, 49 (4): 114-121. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201304022.htm
    [11]
    CHEN Li, XI Gang, SUN Jing. Torque coordination control during mode transition for a series-parallel hybrid electric vehicle[J]. IEEE Transactions on Vehicular Technology, 2012, 61 (7): 2936-2949.
    [12]
    SUN Jing, XING Guo-jing, LIU Xu-dong, et al. A novel torque coordination control strategy of a single-shaft parallel hybrid electric vehicle based on model predictive control[J]. Mathematical Problems in Engineering, 2015, 2015: 1-12.
    [13]
    WU Guang, ZHANG Xing, Dong Zuo-min. Optimal control for ensured drivability of paralell HEVs/PHEVs during mode transition[C]∥SAE International. SAE 2014 World Congress and Exhibition. Warrendale: SAE International, 2014, DOI: 10.4271/2014-01-1895.
    [14]
    TOMURA S, ITO Y, KAMICHI K, et al. Development of vibration reduction motor control for series-parallel hybrid system[C]∥SAE International. SAE 2006 World Congress. Warrendale: SAE International, 2006, DOI: 10.4271/2006-01-1125.
    [15]
    KAWABATA N, KOMADA M, YOSHIOKA T. Noise and vibration reduction technology in the development of hybrid luxury sedan with series/parallel hybrid system[C]∥SAE International. SAE 2007Noise and Vibration Conference and Exhibition. Warrendale: SAE International, 2007, DOI: 10.4271/2007-01-2232.
    [16]
    KOKAJI J, KOMADA M, TAKEI M, et al. Mechanism of low frequency idling vibration in rear-wheel drive hybrid vehicle equipped with THS II[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2015, 8 (3): 910-915.
    [17]
    WATANABE T, FUJIYOSHI T, MURAKAMI A. Vibration torque interception using multi-functional electromagnetic coupling in a HEV drive line[J]. SAE International Journal of Alternative Powertrains, 2016, 5 (1): 157-166.
    [18]
    ZHAO Zhi-guo, DAI Xian-jun, WANG Chen, et al. Coordinated control of driving mode switching of compound power-split hybrid electric car[J]. Automotive Engineering, 2015, 37 (3): 260-265, 259. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201503002.htm
    [19]
    PARMAR V, DI ROCCO D, SOPOUCH M, et al. Multiphysics simulation model for noise and vibration effects in hybrid vehicle powertrain[C]∥SAE International. SAE 32nd Annual Brake Colloquium and Exhibition. Warrendale: SAE International, 2014, DOI: 10.4271/2014-01-2093.
    [20]
    YAZAKI M. Vibration reduction in motors for the sport hybrid SH-AWD[J]. SAE International Journal of Alternative Powertrains, 2015, 4 (1): 153-161.
    [21]
    HE Ren, SHU Chi. Overview of power-switch coordinated control of hybrid electric car[J]. Journal of Jiangsu University: Natural Science Edition, 2014, 35 (4): 373-379. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSLG201404001.htm
    [22]
    WANG Jun. Control strategy optimization and dynamic coordination control of hybrid electric bus with AMT[D]. Changchun: Jilin University, 2015. (in Chinese).
    [23]
    JUN Wang, WANG Qing-nian, WANG Peng-yu, et al. Mode transition dynamic control for dual-motor hybrid driving system[C]∥SAE International. SAE/KSAE 2013International Powertrains, Fuels and Lubricants Meeting. Warrendale: SAE International, 2013, DOI: 10.4271/2013-01-2487.
    [24]
    ZHANG Na, ZHAO Feng, LUO Yu-gong, et al. A dynamic coordinated control strategy for the mode-switch of HEV based on motor speed closed-loop control[J]. Automotive Engineering, 2014, 36 (2): 134-138. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201402003.htm

Catalog

    Article Metrics

    Article views (652) PDF downloads(595) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return