DU Qiang, SUN Qiang, YANG Qi, FENG Xin-yu, YANG Jian. Path analysis method of driving factors of carbon emissions for Chinese transportation industry[J]. Journal of Traffic and Transportation Engineering, 2017, 17(2): 143-150.
Citation: DU Qiang, SUN Qiang, YANG Qi, FENG Xin-yu, YANG Jian. Path analysis method of driving factors of carbon emissions for Chinese transportation industry[J]. Journal of Traffic and Transportation Engineering, 2017, 17(2): 143-150.

Path analysis method of driving factors of carbon emissions for Chinese transportation industry

More Information
  • Author Bio:

    DU Qiang(1981-), male, associate professor, PhD, +86-29-82339228, q.du@chd.edu.cn

  • Received Date: 2016-12-25
  • Publish Date: 2017-04-25
  • The driving factors of carbon emissions for Chinese transportation industry were analyzed, and the path analysis method of carbon emissions' driving factors was proposed based on multi-element regression analysis method.Based on the last two decades' panel data of carbon emissions for Chinese transportation industry, the direct and indirect path coefficients of the factors were computed, and the direct influence degrees of main driving factors and the indirect influence degrees of their interactions were studied.Analysis result shows that economic level, transportation intensity and energy intensity are main influence factors of transportation carbon emissions.The larger the direct path coefficient is, the greaterthe promotion to transportation carbon emissions is.The larger the indirect path coefficient is, the greater the dependence on other factors is.Economic level's direct path coefficient is 1.338, which indicates that economic growth directly stimulates the increase of carbon emissions.The sum of economic level's indirect path coefficients is-0.350, so economic level has little dependence on other two factors but has strong promotion effect.Transportation intensity's direct path coefficient is 0.422, which indicates that transportation intensity increases transportation carbon emissions. The sum of transportation intensity's indirect path coefficients is 1.171, so transportation intensity has strong dependence on economic level, the logistic quantity and logistic cost of unit GDP consumption are higher, and the added value of industry is lower.Energy intensity's direct path coefficient is 0.216, which indicates that energy intensity is an important factor to increase transportation carbon emissions.The sum of energy intensity's indirect coefficients is 0.119, so economic development increases energy consumption, which results in a large amount of carbon dioxide emission, and the high economic and environmental costs results from the higher energy consumption of unit turnover and the lower intensive using degree of energy.

     

  • loading
  • [1]
    HEIDARI H, KATIRCIOGLU S T, SAEIDPOUR L. Economic growth, CO2emissions, and energy consumption in the five ASEAN countries[J]. Electrical Power and Energy Systems, 2015, 64: 785-791. doi: 10.1016/j.ijepes.2014.07.081
    [2]
    LIN Bo-qiang, XIE Chun-ping. Reduction potential of CO2emissions in China's transport industry[J]. Renewable and Sustainable Energy Reviews, 2014, 33: 689-700. doi: 10.1016/j.rser.2014.02.017
    [3]
    ZWAAN B V, KEPPO I, JOHNSSON F. How to decarbonize the transport sector?[J]. Energy Policy, 2013, 61 (7): 562-573.
    [4]
    ANDREONI V, GALMARINI S. European CO2emission trends: a decomposition analysis for water and aviation transport sectors[J]. Energy, 2012, 45 (1): 595-602. doi: 10.1016/j.energy.2012.07.039
    [5]
    CHANDRAN V G R, TANG C F. The impacts of transport energy consumption, foreign direct investment and income on CO2emissions in ASEAN-5economies[J]. Renewable and Sustainable Energy Reviews, 2013, 24 (10): 445-453.
    [6]
    ZHANG Ming, LI Hua-nan, ZHOU Min, et al. Decomposition analysis of energy consumption in Chinese transportation sector[J]. Applied Energy, 2011, 88 (6): 2279-2285. doi: 10.1016/j.apenergy.2010.12.077
    [7]
    BELLASIO R, BIANCONI R, CORDA G, et al. Emission inventory for the road transport sector in Sardinia (Italy)[J]. Atmospheric Environment, 2007, 41 (4): 677-691. doi: 10.1016/j.atmosenv.2006.09.017
    [8]
    黄文伟, 强明明, 孙龙林, 等. 基于MOVES的车辆排放因子测试[J]. 交通运输工程学报, 2017, 17 (1): 140-148. doi: 10.3969/j.issn.1671-1637.2017.01.016

    HUANG Wen-wei, QIANG Ming-ming, SUN Long-lin, et al. Emission factor measurement of vehicles based on MOVES[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (1): 140-148. (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.01.016
    [9]
    XU Bin, LIN Bo-qiang. Carbon dioxide emissions reduction in China's transport sector: a dynamic VAR (vector autoregression) approach[J]. Energy, 2015, 83: 486-495. doi: 10.1016/j.energy.2015.02.052
    [10]
    RYAN L, FERREIRA S, CONVERY F. The impact of fiscal and other measures on new passenger car sales and CO2emissions intensity: Evidence from Europe[J]. Energy Economics, 2009, 31 (3): 365-374. doi: 10.1016/j.eneco.2008.11.011
    [11]
    TIMILSINA G R, SHRESTHA A. Transport sector CO2emission growth in Asia: underlying factors and policy options[J]. Energy Policy, 2009, 37 (11): 4523-4539. doi: 10.1016/j.enpol.2009.06.009
    [12]
    ZHANG Chuan-guo, NIAN Jiang. Panel estimation for transport sector CO2emissions and its affecting factors: a reginal analysis in China[J]. Energy Policy, 2013, 63 (4): 918-926.
    [13]
    纪建悦, 孔胶胶. 基于STIRFDT模型的海洋交通运输业碳排放预测研究[J]. 科技管理研究, 2012 (6): 79-81. doi: 10.3969/j.issn.1000-7695.2012.06.019

    JI Jian-yue, KONG Jiao-jiao. Prediction research on carbon emissions of marine transportation based on STIRFDT model[J]. Science and Technology Management Research, 2012 (6): 79-81. (in Chinese). doi: 10.3969/j.issn.1000-7695.2012.06.019
    [14]
    魏庆琦, 赵嵩正, 肖摇伟. 我国交通运输结构优化的碳减排能力研究[J]. 交通运输系统工程与信息, 2013, 13 (3): 10-17, 32. doi: 10.3969/j.issn.1009-6744.2013.03.002

    WEI Qing-qi, ZHAO Song-zheng, XIAO Yao-wei. A quantitative analysis of carbon emissions reduction ability of transportation structure optimization in China[J]. Journal of Transportation Systems Engineering and Information Technology, 2013, 13 (3): 10-17, 32. (in Chinese). doi: 10.3969/j.issn.1009-6744.2013.03.002
    [15]
    PAPAGIANNAKI K, DIAKOULAKI D. Decomposition analysis of CO2emissions from passenger cars: The cases of Greece and Denmark[J]. Energy Policy, 2009, 37 (8): 3259-3267. doi: 10.1016/j.enpol.2009.04.026
    [16]
    呙小明, 张宗益. 我国交通运输业能源强度影响因素研究[J]. 管理工程学报, 2012, 26 (4): 90-99. doi: 10.3969/j.issn.1004-6062.2012.04.013

    GUO Xiao-ming, ZHANG Zong-yi. What is keeping energy intensity in China's transportation sector from deterioration?[J]. Journal of Industrial Engineering/Engineering Management, 2012, 26 (4): 90-99. (in Chinese). doi: 10.3969/j.issn.1004-6062.2012.04.013
    [17]
    杨琦, 朱容辉, 赵小强. 中国交通运输业的碳排放情景预测模型[J]. 长安大学学报: 自然科学版, 2014, 34 (5): 77-83. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201405013.htm

    YANG Qi, ZHU Rong-hui, ZHAO Xiao-qiang. Calculation decoupling analysis and scenario prediction of carbon emissions of transportation in China[J]. Journal of Chang'an University: Natural Science Edition, 2014, 34 (5): 77-83. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201405013.htm
    [18]
    王韶华, 于维洋, 张伟. 低碳经济的驱动因素及其驱动机理分析[J]. 环境工程, 2014, 32 (12): 143-147. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201412036.htm

    WANG Shao-hua, YU Wei-yang, ZHANG Wei. Research on the influence factor and influencemechanism of low-carbon economy[J]. Environmental Engineering, 2014, 32 (12): 143-147. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201412036.htm
    [19]
    程新意, 李少疆. 通径分析的数学模型[J]. 工科数学, 1990, 6 (4): 99-105. https://www.cnki.com.cn/Article/CJFDTOTAL-GKSX199004033.htm

    CHENG Xin-yi, LI Shao-jiang. Mathematical models of path analysis[J]. Journal of Mathematics EOR Technology, 1990, 6 (4): 99-105. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GKSX199004033.htm
    [20]
    崔党群. 通径分析的矩阵算法[J]. 生物数学学报, 1994, 9 (1): 71-76. https://www.cnki.com.cn/Article/CJFDTOTAL-SWSX199401011.htm

    CUI Dang-qun. The matrix solutions on path analysis[J]. Journal of Biomathematics, 1994 (1): 71-76. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SWSX199401011.htm
    [21]
    SABOORI B, SAPRI M, BABA M. Economic growth, energy consumption and CO2 emissions in OECD (Organization for Economic Co-operation and Development) 's transport sector: a fully modified bi-directional relationship approach[J]. Energy, 2014, 66: 150-161.
    [22]
    HEINRICHS H, JOCHEM P, FICHTNER W. Including road transport in the EU ETS (european emissions trading system): a model-based analysis of the German electricity and transport sector[J]. Energy, 2014, 69 (5): 708-720.
    [23]
    TIAN Yi-hui, ZHU Qing-hua, LAI K H, et al. Analysis of greenhouse gas emissions of freight transport sector in China[J]. Journal of Transport Geography, 2014, 40: 43-52.
    [24]
    MRAIHI R, ABDALLAH K B, ABID M. Road transportrelated energy consumption: analysis of driving factors in Tunisia[J]. Energy Policy, 2013, 62 (7): 247-253.
    [25]
    吴巧生, 成金华, 王华. 中国工业化进程中的能源消费变动[J]. 中国工业经济, 2005 (4): 30-37. https://www.cnki.com.cn/Article/CJFDTOTAL-GGYY200504003.htm

    WU Qiao-sheng, CHENG Jin-hua, WANG Hua. Change of energy consumption with the process of industrialization in China[J]. China Industrial Economy, 2005 (4): 30-37. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GGYY200504003.htm
    [26]
    赵涛, 郑丹. 1996-2010年中国能源碳足迹生态压力研究[J]. 干旱区资源与环境, 2014, 28 (8): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201408001.htm

    ZHAO Tao, ZHENG Dan. The ecological pressure intensity of carbon footprint in China from 1996to 2010[J]. Journal of Arid Land Resources and Environment, 2014, 28 (8): 1-6. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201408001.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (845) PDF downloads(543) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return