YANG Lu-feng, JIE Wei-wei, ZHENG Jian, ZHANG Wei. Linear-elastic analysis method of ultimate bearing capacity of dumbbell-shaped CFST arch rib[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 25-35.
Citation: YANG Lu-feng, JIE Wei-wei, ZHENG Jian, ZHANG Wei. Linear-elastic analysis method of ultimate bearing capacity of dumbbell-shaped CFST arch rib[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 25-35.

Linear-elastic analysis method of ultimate bearing capacity of dumbbell-shaped CFST arch rib

More Information
  • Author Bio:

    YANG Lu-feng(1966-), male, professor, PhD, +86-771-2366109, lfyang@gxu.edu.c

    ZHANG Wei(1977-), male, professor, PhD, +86-771-3235070, zh.ei@163.com

  • Received Date: 2016-12-23
  • Publish Date: 2017-06-25
  • In order to improve the computational efficiency of ultimate bearing capacity of dumbbell-shaped CFST (concrete filled steel tube) arch rib, a high-efficiency self-adaptive elastic modulus reduction method (EMRM) was proposed to analyze the ultimate bearing capacity. Based on the continuity conditions and the plastic bearing property of section, the correlation equations of compressing-bending capacity of dumbbell-shaped component for CFST were established, and the corresponding homogeneous generalized yield function (HGYF) wasdetermined by means of regression analysis. A linear-elastic finite element iterative model of arch rib was developed by using simplex beam element with combined material parameters, and the elastic modulus of highly loaded element was reduced through self-adaption to simulate the structural stiffness damage in the loading process, so as to confirm the ultimate bearing capacity of arch rib. The proposed method was compared with model test, non-linear finite element method and equivalent beam-column method. Calculation result shows that the calculation result of HGYF is stable and reliable, and the impact of initial loads on the calculation result of traditional generalized yield function is overcomed. The proposed method has higher accuracy and efficiency than the nonlinear finite element method, the stable ultimate bearing capacity is obtained by only small amount of discretized meshes and iteration steps, the relative error is less than 3% compared with test result data, and the computation time is less than 16 s. Compared with the circular section arch rib, the dumbbell-shaped CFST arch rib has better bearing property, and the main influence factors are rise-span ratio, steel ratio and loading condition. The increasing speed of ultimate bearing capacity reduces with the increase of rise-span ratio. With the increase of steel ratio, the ultimate bearing capacity increases almost linearly. The larger the ratio of concentrated load to uniform load is, the less its influence on the bearing capacity is. The axial force and bending moment are the governing internal forces of arch rib, while the bending moment becomes more significant with the increase of rise-span ratio.

     

  • loading
  • [1]
    CHEN Bao-chun, CHEN Kang-ming, NAKAMURA S, et al. A survey of steel arch bridges in China[J]. Journal of Civil Engineering and Architecture, 2011, 5 (9): 799-808.
    [2]
    ZENG Guo-feng, FAN Li-chu, ZHANG Guan-yong. Load capacity analysis of concrete filled steel tube arch bridge with the composite beam element[J]. Journal of the China Railway Society, 2003, 25 (5): 97-102. (in Chinese). doi: 10.3321/j.issn:1001-8360.2003.05.019
    [3]
    CHEN Bao-chun, SHENG Ye. Research on load-carrying capacity of concrete filled steel tubular dumbbell shaped rib arch under in-plane loads[J]. Engineering Mechanics, 2009, 26 (9): 94-104. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200909018.htm
    [4]
    ZENG Guo-feng. Study of ultimate load bearing capacity for concrete-filled steel tube tied arch bridge[D]. Shanghai: Tongji University, 2003. (in Chinese).
    [5]
    GONG Mei-jie. The in-plane ultimate bearing capacity analysis for arch rib of dumbbell shaped concrete filled steel tubular[D]. Chengdu: Southwest Jiaotong University, 2011. (in Chinese).
    [6]
    LI Yan, ZHAO Jun-hai, ZHANG Chang-guang, et al. Study of ultimate bearing capacity of dumbbell shaped concrete filled tubular arch rib[J]. Chinese Journal of Computational Mechanics, 2015, 32 (1): 99-106. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201501017.htm
    [7]
    ZHOU Shui-xing, LIU Qi, CHEN Zhan-rong. Effect of initial stress on bearing capacity of dumbbell concrete-filled steel tube arch bridge[J]. Engineering Mechanics, 2008, 25 (7): 159-165, 178. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200807032.htm
    [8]
    YAN Sheng-you, ZHENG Jiang-min, XIANG Yi-qiang, et al. Study on calculating methods of dumbbell-shaped CFST arch bridge[J]. Journal of Highway and Transportation Research and Development, 2004, 21 (6): 54-57. (in Chinese). doi: 10.3969/j.issn.1002-0268.2004.06.015
    [9]
    ZHANG Jian-min. Bearing capacity and construction control research of long-span concrete filled steel tubular arch bridges[D]. Guangzhou: South China University of Technology, 2001. (in Chinese).
    [10]
    MACKENZIE D, BOYLE J T, HAMILTON R. The elastic compensation method for limit and shakedown analysis: a review[J]. Journal of Strain Analysis for Engineering Design, 2000, 35 (3): 171-188. doi: 10.1243/0309324001514332
    [11]
    SESHADRI R, HOSSAIN M M. Simplified limit load determination using the mα-tangent method[J]. Journal of Pressure Vessel Technology, 2009, 131 (2): 287-294.
    [12]
    CHEN Li-jie, LIU Ying-hua, YANG Pu, et al. Limit analysis of structures containing flaws based on a modified elastic compensation method[J]. European Journal of Mechanics, 2008, 27 (2): 195-209. doi: 10.1016/j.euromechsol.2007.05.010
    [13]
    ZHANG Wei, YANG Lu-feng, HAN Xiao-feng. Safety evaluation of shell type bifurcated pipes using elastic compensation finite element method[J]. Journal of Hydraulic Engineering, 2009, 40 (10): 1175-1183. (in Chinese). doi: 10.3321/j.issn:0559-9350.2009.10.004
    [14]
    YANG Lu-feng, YU Bo, QIAO Yong-ping. Elastic modulus reduction method for limit load evaluation of frame structures[J]. Acta Mechanica Solida Sinica, 2009, 22 (2): 109-115. doi: 10.1016/S0894-9166(09)60095-1
    [15]
    YANG Lu-feng, YU Bo, JU J W. Incorporated strength capacity technique for limit load evaluation of trusses and framed structures under constant loading[J]. Journal of Structural Engineering, 2015, 141 (11): 1-11.
    [16]
    YANG Lu-feng, LI Qi, ZHANG Wei, et al. Homogeneous generalized yield criterion based elastic modulus reduction method for limit analysis of thin-walled structures with angle steel[J]. Thin-Walled Structures, 2014, 80: 153-158. doi: 10.1016/j.tws.2014.02.030
    [17]
    SHI J, BOYLE J T, MACKENZIE D, et al. Approximate limit design of frames using elastic analysis[J]. Computers and Structures, 1996, 61 (3): 495-501. doi: 10.1016/0045-7949(96)00095-8
    [18]
    HAMILTON R, BOYLE J T. Simplified lower bound limit analysis of transversely loaded thin plates using generalised yield criteria[J]. Thin-Walled Structures, 2002, 40 (6): 503-522. doi: 10.1016/S0263-8231(02)00007-1
    [19]
    MARTIN-ARTIEDA C C, DARGUSH G F. Approximate limit load evaluation of structural frames using linear elastic analysis[J]. Engineering Structures, 2007, 29 (3): 296-304. doi: 10.1016/j.engstruct.2006.03.013
    [20]
    TU Ling. The bearing capacity calculation of the CFST arch bridges[J]. Journal of Chongqing Jiaotong Institute, 1999, 18 (2): 8-12. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT902.001.htm
    [21]
    WEI Jian-gang, CHEN Bao-chun. Analysis on rib rigidity of concrete filled tubular arch bridge[J]. Journal of Traffic and Transportation Engineering, 2008, 8 (2): 34-39. (in Chinese). http://transport.chd.edu.cn/article/id/200802008
    [22]
    CHEN Bao-chun, XIAO Ze-rong, WEI Jian-gang. Experimental study of concrete-filled steel tubular dumbbell shaped columns under eccentric loads[J]. Engineering Mechanics, 2005, 22 (2): 89-95. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX20050200G.htm
    [23]
    CHEN Bao-chun, HUANG Fu-yun, SHENG Ye. Experimental study of concrete-filled steel tubular dumbbell shaped short columns under concentric loads[J]. Engineering Mechanics, 2005, 22 (1): 187-194. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200501032.htm
    [24]
    SHENG Ye. Calculation method on load-carrying capacity of dumbbell shaped concrete filled steel tubular flexural member[J]. Journal of Anhui University of Technology: Natural Science, 2010, 27 (2): 163-166. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HDYX201002017.htm
    [25]
    SHENG Ye, CHEN Bao-chun, WEI Jian-gang. Experimental research on concrete filled steel tubular stubs with new type dumbbell section under eccentrical loads[J]. Journal of Fuzhou University: Natural Science, 2007, 35 (2): 276-280. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FZDZ200702025.htm
    [26]
    YANG Lu-feng, LI Qi, ZHANG Wei, et al. Homogeneous generalized yield function of circular tube section for ultimate bearing capacity of thin-walled structures[J]. Chinese Journal of Computational Mechanics, 2013, 30 (5): 693-698. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201305017.htm
    [27]
    YANG Lu-feng, WU Wen-long, YU Bo. A failure-path independent method for analysis of structural system reliability[J]. Scientia Sinica: Physica, Mechanica and Astronomica, 2014, 44 (11): 1220-1231. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201411010.htm

Catalog

    Article Metrics

    Article views (677) PDF downloads(850) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return