Citation: | LIANG Min-jian, CUI Xiao-yu, SONG Qing-song, ZHAO Xiang-mo. Traffic sign recognition method based on HOG-Gabor feature fusion and Softmax classifier[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 151-158. |
[1] |
FLEYEH H, DAVAMI E. Eigen-based traffic sign recognition[J]. IET Intelligent Transport Systems, 2011, 5 (3): 190-196. doi: 10.1049/iet-its.2010.0159
|
[2] |
LIM K, HONG Y, CHOI Y, et al. Real-time traffic sign recognition based on a general purpose GPU and deeplearning[J]. Plos One, 2017, 12 (3): 1-22.
|
[3] |
ZAKLOUTA F, STANCIULESCU B. Real-time traffic sign recognition in three stages[J]. Robotics and Autonomous Systems, 2014, 62 (1): 16-24. doi: 10.1016/j.robot.2012.07.019
|
[4] |
HUANG Zhi-yong, YU Yuan-long, GU J, et al. An efficient method for traffic sign recognition based on extreme learning machine[J]. IEEE Transactions on Cybernetics, 2017, 47 (4): 920-933. doi: 10.1109/TCYB.2016.2533424
|
[5] |
ZENG Yu-jun, XU Xin, SHEN Da-yong, et al. Traffic sign recognition using kernel extreme learning machines with deep perceptual features[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18 (6): 1647-1653.
|
[6] |
GREENHALGH J, MIRMEHDI M. Real-time detection and recognition of road traffic signs[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13 (4): 1498-1506. doi: 10.1109/TITS.2012.2208909
|
[7] |
WANG Xiao-yu, HAN T X, YAN Shui-cheng. An HOG-LBP human detector with partial occlusion handling[C]∥IEEE. The2009 IEEE 12th International Conference on Computer Vision. New York: IEEE, 2009: 32-39.
|
[8] |
STALLKAMP J, SCHLIPSING M, SALMEN J, et al. Man vs. computer: benchmarking machine learning algorithms for traffic sign recognition[J]. Neural Networks, 2012, 32 (2): 323-332.
|
[9] |
WANG Gang-yi, REN Guang-hui, WU Zhi-lu, et al. A hierarchical method for traffic sign classification with support vector machines[C]∥IEEE. The 2013 International Joint Conference on Neural Networks. New York: IEEE, 2013: 1-6.
|
[10] |
SERMANET P, LECUN Y. Traffic sign recognition with multi-scale convolutional networks[C]∥IEEE. The 2011International Joint Conference on Neural Networks. New York: IEEE, 2011: 2809-2813.
|
[11] |
SUN Zhan-li, WANG Han, LAU W S, et al. Application of BW-ELM model on traffic sign recognition[J]. Neurocomputing, 2013, 128: 153-159.
|
[12] |
TANG Sui-sui, HUANG Lin-lin. Traffic sign recognition using complementary features[C]∥IEEE. 2013 2nd IAPR Asian Conference on Pattern Recognition. New York: IEEE, 2013: 210-214.
|
[13] |
ZHU Ying-ying, WANG Xing-gang, YAO Cong, et al. Traffic sign classification using two-layer image representation[C]∥IEEE. 2013 20th IEEE International Conference on Image Processing. New York: IEEE, 2013: 3755-3759.
|
[14] |
LU Ke, DING Zheng-ming, GE S. Sparse-representationbased graph embedding for traffic sign recognition[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13 (4): 1515-1524. doi: 10.1109/TITS.2012.2220965
|
[15] |
CIRESAN D, MEIER U, MASCI J, et al. Multi-column deep neural network for traffic sign classification[J]. Neural Networks, 2012, 32: 333-338. doi: 10.1016/j.neunet.2012.02.023
|
[16] |
刘占文, 赵祥模, 李强, 等. 基于图模型与卷积神经网络的交通标志识别方法[J]. 交通运输工程学报, 2016, 16 (5): 122-131. doi: 10.3969/j.issn.1671-1637.2016.05.014
LIU Zhan-wen, ZHAO Xiang-mo, LI Qiang, et al. Traffic sign recognition method based on graphical model and convolutional neural network[J]. Journal of Traffic and Transportation Engineering, 2016, 16 (5): 122-131. (in Chinese). doi: 10.3969/j.issn.1671-1637.2016.05.014
|
[17] |
梁琳, 何卫平, 雷蕾, 等. 光照不均图像增强方法综述[J]. 计算机应用研究, 2010, 27 (5): 1625-1628. doi: 10.3969/j.issn.1001-3695.2010.05.006
LIANG Lin, HE Wei-ping, LEI Lei, et al. Survey on enhancement methods for non-uniform illumination image[J]. Application Research of Computers, 2010, 27 (5): 1625-1628. (in Chinese). doi: 10.3969/j.issn.1001-3695.2010.05.006
|
[18] |
DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]∥IEEE. 2005IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2005: 886-893.
|
[19] |
HYUN J, BAEK J, KIM J, et al. Proposing a fast circular HOG descriptor for detecting rotated objects[C]∥IEEE. The 2015 International Joint Conference on Neural Networks. New York: IEEE, 2015: 1-6.
|
[20] |
HAGHIGHAT M, ZONOUZ S, ABDEL-MOTTALEB M. CloudID: trustworthy cloud-based and cross-enterprise biometric identification[J]. Expert Systems with Applications, 2015, 42 (21): 7905-7916. doi: 10.1016/j.eswa.2015.06.025
|
[21] |
YAO Chang, WU Feng, CHEN Hou-jin, et al. Traffic sign recognition using HOG-SVM and grid search[C]∥IEEE. 12th International Conference on Signal Processing. New York: IEEE, 2014: 962-965.
|
[22] |
MARTINEZ A M, KAK A C. PCA versus LDA[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23 (2): 228-233. doi: 10.1109/34.908974
|
[23] |
MATHIAS M, TIMOFTE R, BENENSON R, et al. Traffic Sign Recognition-How far are we from the solution?[C]∥IEEE. The 2013International Joint Conference on Neural Networks. New York: IEEE, 2013: 1-8.
|
[24] |
宋青松, 田正鑫, 孙文磊, 等. 用于孤立数字语音识别的一种组合降维方法[J]. 西安交通大学学报, 2016, 50 (6): 42-46. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201606007.htm
SONG Qing-song, TIAN Zheng-xin, SUN Wen-lei, et al. Combined dimension reduction method for isolated digital speech recognition[J]. Journal of Xi'an Jiaotong University, 2016, 50 (6): 42-46. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201606007.htm
|
[25] |
STALLKAMP J, SCHLIPSING M, SALMEN J. The german traffic sign recognition benchmark: a multi-class classification competition[C]∥IEEE. The 2011 International Joint Conference on Neural Networks. New York: IEEE, 2011: 2161-4393.
|
[26] |
CHANG C C, LIN C J. LIBSVM: a library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2 (3): 1-27.
|