JI Jie, LIU Lu-hou, SUO Zhi, ZHANG Yan-jun, JIN Ming-yang, NING Xiang-xiang, JIA Xiao-peng, YAO Hui. Influence of epoxy asphalt concrete anti-fatigue layer on structure of perpetual asphalt concrete pavement with flexible base[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 1-8.
Citation: JI Jie, LIU Lu-hou, SUO Zhi, ZHANG Yan-jun, JIN Ming-yang, NING Xiang-xiang, JIA Xiao-peng, YAO Hui. Influence of epoxy asphalt concrete anti-fatigue layer on structure of perpetual asphalt concrete pavement with flexible base[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 1-8.

Influence of epoxy asphalt concrete anti-fatigue layer on structure of perpetual asphalt concrete pavement with flexible base

More Information
  • Author Bio:

    JI Jie(1972-), female, professor, PhD, +86-10-68322520, jijie@bucea.edu.cn

  • Received Date: 2017-03-25
  • Publish Date: 2017-08-25
  • A kind of new epoxy asphalt for road engineering was developed. Based on tensile test, viscosity test, and fluorescence microscope technology, the tensile strength, breaking elongation, changing rules of viscosity with time, and microscopic curing mechanism of epoxy asphalt were evaluated. The epoxy asphalt concrete AC-13 C was designed, and its road performances andfatigue characteristics were evaluated. When common asphalt concrete, SBS modified asphalt concrete and epoxy asphalt concrete were taken as anti-fatigue layers, the influences of antifatigue layers on the structural thickness and fatigue life of perpetual asphalt concrete pavement with flexible base were analyzed. Test result shows that the tensile strength of epoxy asphalt is 2.47 MPa and the breaking elongation is 2.65, which satisfies the technical requirement that the tensile strength is not less than 1.5 MPa and the breaking elongation is not less than 2. The time needs 54 min when the viscosity of epoxy asphalt reach to 1 Pa·s, after 54 min, the viscosity increases rapidly, so the total time for mixing, transportation, and paving should be controlled within 54 min in construction. The fatigue strain limit is 333μεwhen the fatigue life is 1 billion times according to the fatigue equation of epoxy asphalt concrete. Compared to common asphalt concrete and SBS modified asphalt concrete, when epoxy asphalt concrete is taken as anti-fatigue layer, the fatigue life of perpetual asphalt concrete pavement increases by 2.92×105 times and 4.39×103 times respectively, and the thickness decreases 18 cm and 10 cm. The microscopic curing mechanism of epoxy asphalt is that epoxy resin and hardener form cross-linked and three-dimensional network structure from point to line and from line to net in asphalt.

     

  • loading
  • [1]
    NEWCOMB D E, BUNCHER M, HUDDLESTON I J. Concepts of perpetual pavements[J]. Transportation Research Circular, 2001 (503): 4-11.
    [2]
    薛忠军, 王春明, 张伟, 等. 半刚性基层长寿命路面结构和材料设计研究[J]. 公路交通科技, 2015, 32 (10): 37-42. doi: 10.3969/j.issn.1002-0268.2015.10.007

    XUE Zhong-jun, WANG Chun-ming, ZHANG Wei, et al. Research on pavement structure and material design of semirigid base long-life pavement[J]. Journal of Highway and Transportation Research and Development, 2015, 32 (10): 37-42, 56. (in Chinese). doi: 10.3969/j.issn.1002-0268.2015.10.007
    [3]
    粟弼国. 重载交通长寿命沥青路面结构分析[D]. 杭州: 浙江大学, 2008.

    SU Bi-guo. Analysis of heavy-loaded long-life asphalt pavement[D]. Hangzhou: Zhejiang University, 2008. (in Chinese).
    [4]
    NEWCOMB D. Perpetual pavements—a synthesis[R]. Lanham: Asphalt Pavement Alliance, 2002.
    [5]
    HARM E. Illinois extended-life hot-mix asphalt pavements[J]. Transportation Research Circular, 2001 (503): 108-113.
    [6]
    MONISMITH C L. Analytically based asphalt pavement design and rehabilitation: theory to practice, 1962—1992[J]. Transportation Research Record, 1992 (1354): 5-26.
    [7]
    VON QUINTUS H L. Hot-mix asphalt layer thickness design for longer-life bituminous pavements[J]. Transportation Research Circular, 2001 (503): 66-78.
    [8]
    MAHONEY J P. Study of long-lasting pavements in Washington State[J]. Transportation Research Circular, 2001 (503): 88-95.
    [9]
    NUNN M E, BROWN A, WESTON D, et al. Design of long-life flexible pavements for heavy traffic[R]. Berkshire: Transport Research Laboratory, 1997.
    [10]
    KANZAKI H, KUBO K, KAMIYA K. Long-term pavement performance (LTPP) program in Japan[C]∥ASCE. Pacific Rim TransTech Conference—Volume II: International Ties, Management Systems, Propulsion Technology, Strategic Highway Research Program. Reston: ASCE, 2015: 1-12.
    [11]
    Minnesota Asphalt Pavement Association. Summary of Minnesota research findings[R]. Saint Paul: Minnesota Asphalt Pavement Association, 2003.
    [12]
    PROWELL B D, BROWN E R. Methods for determining the endurance limit using beam fatigue tests[R]. Auburndale: National Center for Asphalt Technology, 2006.
    [13]
    PRIEST A L, TIMM D H. Methodology and calibration of fatigue transfer functions for mechanistic-empirical flexible pavement design[R]. Auburndale: National Center for Asphalt Technology, 2006.
    [14]
    ROBBINS M M, TRAN N H, TIMMB D H, et al. Adaptation and validation of stochastic limiting strain distribution and fatigue ratio concepts for perpetual pavement design[J]. Road Materials and Pavement Design, 2015, 16 (S2): 100-124.
    [15]
    聂忆华, 张起森. 长寿命沥青路面沥青层力学分析及其层位划分研究[J]. 公路交通科技, 2008, 25 (5): 13-17. doi: 10.3969/j.issn.1002-0268.2008.05.003

    NIE Yi-hua, ZHANG Qi-sen. Mechanical analysis and asphalt layer subdivision of long life asphalt pavement (LLAP) structures[J]. Journal of Highway and Transportation Research and Development, 2008, 25 (5): 13-17. (in Chinese). doi: 10.3969/j.issn.1002-0268.2008.05.003
    [16]
    易向阳. 长寿命柔性路面技术的探讨与应用[J]. 公路交通科技, 2015, 32 (6): 25-31. doi: 10.3969/j.issn.1002-0268.2015.06.005

    YI Xiang-yang. Discussion and application of long-life flexible pavement technology[J]. Journal of Highway and Transportation Research and Development, 2015, 32 (6): 25-31. (in Chinese). doi: 10.3969/j.issn.1002-0268.2015.06.005
    [17]
    钱振东, 王江洋, 王亚奇. 水泥混凝土桥梁长寿命桥面铺装层复合结构疲劳特性[J]. 中国公路学报, 2012, 25 (5): 67-73. doi: 10.3969/j.issn.1001-7372.2012.05.012

    QIAN Zhen-dong, WANG Jiang-yang, WANG Ya-qi. Fatigue performance of composite structure for perpetual pavement on cement concrete bridge deck[J]. China Journal of Highway and Transport, 2012, 25 (5): 67-73. (in Chinese). doi: 10.3969/j.issn.1001-7372.2012.05.012
    [18]
    崔鹏, 邵敏华, 孙立军. 长寿命沥青路面设计指标研究[J]. 交通运输工程学报, 2008, 8 (3): 37-42. http://transport.chd.edu.cn/article/id/200803009

    CUI Peng, SHAO Min-hua, SUN Li-jun. Research on design indices of perpetual asphalt pavement[J]. Journal of Traffic and Transportation Engineering, 2008, 8 (3): 37-42. (in Chinese). http://transport.chd.edu.cn/article/id/200803009
    [19]
    平树江, 申爱琴, 李鹏. 长寿命路面沥青混合料疲劳极限研究[J]. 中国公路学报, 2009, 22 (1): 34-38. doi: 10.3321/j.issn:1001-7372.2009.01.006

    PING Shu-jiang, SHEN Ai-qin, LI Peng. Study of fatigue limit of asphalt mixture for perpetual pavement[J]. China Journal of Highway and Transport, 2009, 22 (1): 34-38. (in Chinese). doi: 10.3321/j.issn:1001-7372.2009.01.006
    [20]
    孙策. 长寿命沥青路面疲劳模型及设计指标分析[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    SUN Ce. The analysis of long life asphalt pavement fatigue model and design index[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese).
    [21]
    王熙, 张璐璐. 沥青-环氧树脂复合材料体系的固化反应动力学研究[J]. 化工新型材料, 2017, 45 (6): 128-133. https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC201706043.htm

    WANG Xi, ZHANG Lu-lu. Curing kinetics of asphalt-epoxy resin composite system[J]. New Chemical Materials, 2017, 45 (6): 128-133. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC201706043.htm
    [22]
    王丽杰, 王月欣, 张倩. 热固性环氧沥青增溶剂的合成及应用研究[J]. 热固性树脂, 2015, 30 (1): 52-56.

    WANG Li-jie, WANG Yue-xin, ZHANG Qian. Synthesis and application of thermosetting epoxy asphalt compatibilizer[J]. Thermosetting Resin, 2015, 30 (1): 52-56. (in Chinese).
    [23]
    薛永超, 钱振东. 施工关键因素对环氧沥青混凝土路用性能的影响[J]. 交通运输工程学报, 2016, 16 (3): 17-27. http://transport.chd.edu.cn/article/id/201603003

    XUE Yong-chao, QIAN Zhen-dong. Influence of key factors in construction on pavement performances of epoxy asphalt concrete[J]. Journal of Traffic and Transportation Engineering, 2016, 16 (3): 17-27. (in Chinese). http://transport.chd.edu.cn/article/id/201603003
    [24]
    亢阳. 高性能环氧树脂改性沥青材料的制备与性能表征[D]. 南京: 东南大学, 2006.

    KANG Yang. Preparation and characterization of epoxy resin modified asphalt[D]. Nanjing: Southeast University, 2006. (in Chinese).
    [25]
    欧阳杨. 大跨径钢箱梁桥面铺装环氧沥青混合料性能研究[D]. 西安: 长安大学, 2008.

    OUYANG Yang. Research on performance of epoxy asphalt mixture on long-span steel bridge deck[D]. Xi'an: Chang'an University, 2008. (in Chinese).
    [26]
    王建伟, 于力, 罗桑. 南京长江第二大桥环氧沥青混凝土铺装服役13年回顾[J]. 公路, 2015 (8): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201508008.htm

    WANG Jian-wei, YU Li, LUO Sang. Service condition survey and analysis of epoxy asphalt concrete pavement on Nanjing Second Yangtze River Bridge after thirteen years life[J]. Highway, 2015 (8): 37-40. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201508008.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1197) PDF downloads(1440) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return