LIU Yong-jian, LIU Jiang, ZHANG Ning, FENG Bo-wen, XU Lei. Analytical solution of temperature effects of steel-concrete composite girder[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 9-19.
Citation: LIU Yong-jian, LIU Jiang, ZHANG Ning, FENG Bo-wen, XU Lei. Analytical solution of temperature effects of steel-concrete composite girder[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 9-19.

Analytical solution of temperature effects of steel-concrete composite girder

More Information
  • Author Bio:

    LIU Yong-jian(1966-), male, professor, PhD, +86-29-82334577, lyj.chd@gmail.com

  • Received Date: 2017-03-02
  • Publish Date: 2017-08-25
  • Under the two cases of considering interface slippage or not, the theoretical calculation formulas of steel-concrete composite girder's interface shear force, relative slippage and temperature stress were deduced under arbitrary temperature distribution. The formulas under considering interface slippage were verified by using the finite element simulation. Under the steel-concrete temperature difference pattern (pattern 1), the temperature difference pattern in General Specifications for Design of Highway Bridges and Culverts (JTG D60—2015) (pattern 2) and the temperature difference pattern in British Code BS5400 (pattern 3), the calculation results of temperature effects were compared. Analysis result shows that the interface shear forcedistribution of composite girder calculated by the shear force theoretical formula under considering interface slippage has the same rule with the finite element calculation result, and the maximum shear force deviations under the 3 patterns are 1.15%, 2.65% and 3.41%, respectively. The interface shear force of composite girder obeys hyperbolic cosine function distribution, and the interface slippage obeys hyperbolic sine function distribution. The calculated shear forces under considering interface slippage or not are almost equal, and the maximum deviation is only 1.22%. The maximum deviation of calculated mid-span temperature stress of composite girder is less than 1%. However, the deviation of calculated temperature stress at the end of composite girder is larger. When the temperature difference is 20 ℃ in pattern 3, the temperature tensile stress at concrete slab bottom under considering the slippage is 1.9 times as large as the one under no considering the slippage. The interface temperature effect of composite girder has linear relationship with temperature difference, and its slope is related to the pattern of temperature distribution. The variation rates of interface shear force, interface shear stress and interface slippage are largest in pattern 1, and are 9.138 kN·℃-1, 0.067 MPa·℃-1 and 5.263×10-3 mm·℃-1, respectively. When the temperature difference is 30 ℃, the variation rates of interface shear force, interface shear stress and interface slippage in pattern 1 are more than 3 times as large as the values in pattern 3. Therefore, no considering the temperature gradient of steel girder can cause the deviations of interface force, relative slippage and temperature stress, and the deviations grow with the increase of temperature difference.

     

  • loading
  • [1]
    NIE Jian-guo, YU Zhi-wu. Research and practice of composite steel-concrete beams in China[J]. China Civil Engineering Journal, 1999, 32 (2): 3-8. (in Chinese). doi: 10.3321/j.issn:1000-131X.1999.02.001
    [2]
    LIU Yong-jian, GAO Yi-min, ZHOU Xu-hong, et al. Technical and economic analysis in steel-concrete composite girder bridges with small and medium span[J]. China Journal of Highway and Transport, 2017, 30 (3): 1-13. (in Chinese). doi: 10.3969/j.issn.1001-7372.2017.03.001
    [3]
    BERWANGER C, SYMKO Y. Thermal stresses in steelconcrete composite bridges[J]. Canadian Journal of Civil Engineering, 1975, 2 (1): 66-84. doi: 10.1139/l75-007
    [4]
    CHAN M Y T, BEAUCHAMP J C, CHEUNG M S, et al. Thermal stresses in composite box-girder bridges[C]∥Canadian Society for Civil Engineering. Third International Conference on Short and Medium Span Bridges. Toronto: Canadian Society for Civil Engineering, 1990: 355-366.
    [5]
    CHANG S P, IM C K. Thermal behaviour of composite box girder bridges[J]. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2000, 140 (2): 117-126. doi: 10.1680/stbu.2000.140.2.117
    [6]
    DILGER W H, GHALI A, CHAN M, et al. Temperature stresses in composite box girder bridges[J]. Journal of Structural Engineering, 1983, 109 (6): 1460-1478. doi: 10.1061/(ASCE)0733-9445(1983)109:6(1460)
    [7]
    PRIESTLEY M J. Thermal gradients in bridges-some design considerations[J]. New Zealand Engineering, 1972, 27 (7): 228-233.
    [8]
    ELBADRY M M, GHALI A. Temperature variations in concrete bridges[J]. Journal of Structural Engineering, 1983, 109 (10): 2355-2374. doi: 10.1061/(ASCE)0733-9445(1983)109:10(2355)
    [9]
    ELBADRY M M, GHALI A. Nonlinear temperature distribution and its effects on bridges[J]. IABSE Proceedings, 1983, 66: 169-191.
    [10]
    LIU Xing-fa. Computation of temperature stresses for prestressed concrete box girders[J]. China Civil Engineering Journal, 1986, 19 (1): 46-54. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC198601005.htm
    [11]
    ZHANG Yuan-hai, LI Qiao. Study of the method for calculation of the thermal stress and secondary force of bridge structure by solar radiation[J]. China Journal of Highway and Transport, 2004, 17 (1): 49-52. (in Chinese). doi: 10.3321/j.issn:1001-7372.2004.01.011
    [12]
    ZHANG Yuan-hai, LI Qiao. Analysis of thermal stress for prestressed concrete continuous box-girder bridges[J]. China Civil Engineering Journal, 2006, 39 (3): 98-102. (in Chinese). doi: 10.3321/j.issn:1000-131X.2006.03.015
    [13]
    PENG You-song, QIANG Shi-zhong. Investigation into computational method of self-equilibrating thermal stresses in concrete bridges[J]. Journal of Southwest Jiaotong University, 2006, 41 (4): 452-455. (in Chinese). doi: 10.3969/j.issn.0258-2724.2006.04.010
    [14]
    PENG You-song, QIANG Shi-zhong. 3-D thermal stress computation method of highway concrete box-girder[J]. Journal of Traffic and Transportation Engineering, 2007, 7 (1): 63-67. (in Chinese). doi: 10.3321/j.issn:1671-1637.2007.01.014
    [15]
    PENG You-song, ZHU Xiao-wen, QIANG Shi-zhong. Three dimensional analyses of thermal stresses in concrete boxgirders[J]. Journal of the China Railway Society, 2009, 31 (3): 116-121. (in Chinese). doi: 10.3969/j.issn.1001-8360.2009.03.021
    [16]
    YAN Chang-qing, YANG Xian-quan. Analysis of transverse temperature stress of concrete thin-wall box girder[J]. Bridge Construction, 2009 (3): 25-28. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS200903005.htm
    [17]
    REN Xiang, HUANG Ping-ming, HAN Wan-shui. Transverse temperature stress computation method of concrete thin-wall box-shape structure[J]. China Journal of Highway and Transport, 2012, 25 (1): 76-82. (in Chinese). doi: 10.3969/j.issn.1001-7372.2012.01.012
    [18]
    CHEN Yan-jiang, WANG Li-bo, LI Yong. Research of temperature field and its effect of steel-concrete composite girder bridge[J]. Journal of Highway and Transportation Research and Development, 2014, 31 (11): 85-91. (in Chinese). doi: 10.3969/j.issn.1002-0268.2014.11.014
    [19]
    LIU Yu, SHAO Xu-dong. Research on temperature gradient effect of light-weighted composite bridge deck under solar radiation[J]. Journal of Highway and Transportation Research and Development, 2015, 32 (6): 54-61. (in Chinese). doi: 10.3969/j.issn.1002-0268.2015.06.009
    [20]
    LU Lei. Study on temperature stress of steel and concrete composite beams based ABAQUS[D]. Xi'an: Chang'an University, 2015. (in Chinese).
    [21]
    WANG Da, ZHANG Yong-jian, LIU Yang, et al. Vertical temperature gradient effect analysis of steel-concrete composite deck system on steel truss stiffening girder with health monitoring[J]. China Journal of Highway and Transport, 2015, 28 (11): 29-36. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201511006.htm
    [22]
    WANG Da, WANG Hai-zhu, LIU Yang. In comparison with vertical temperature gradient effects of steel-concrete composite bridge deck in Chinese, American and EU codes[J]. Industrial Construction, 2016, 46 (10): 163-168, 173. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201610033.htm
    [23]
    ZHANG Lie. Experimental study on steel-concrete composite girder thermal effect in early age[J]. Journal of Highway and Transportation Research and Development: Application and Technology, 2017 (2): 153-156. (in Chinese).
    [24]
    CHEN Yu-ji, YE Mei-xin. Analyses of responses of composite girders under the action of temperature[J]. China Railway Science, 2001, 22 (5): 48-53. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200105008.htm
    [25]
    CHEN Yu-ji, YE Mei-xin. Temperature responses of steelconcrete continuous composite girders[J]. Journal of Central South University: Natural Science, 2004, 35 (1): 142-146. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200401028.htm
    [26]
    ZHOU Liang, LU Yuan-chun, LI Xue-feng. Calculation of temperature stress of steel-concrete composite beam[J]. Journal of Highway and Transportation Research and Development, 2012, 29 (5): 83-88. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201205013.htm
    [27]
    ZHOU Yong-chao, HU Sheng-neng, SONG Lei, et al. Effect analysis of steel-concrete composite beam caused by sudden change of temperature[J]. Journal of Traffic and Transportation Engineering, 2013, 13 (1): 20-26. (in Chinese). http://transport.chd.edu.cn/article/id/201301004
    [28]
    YIN Cun-xin. Computing method for effect analysis of temperature and shrinkage on steel-concrete composite beams[J]. China Journal of Highway and Transport, 2014, 27 (11): 76-83. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201411014.htm
    [29]
    WU Xun, CHEN Jing-wei, XIAO Chun, et al. Study on shear effect caused by temperature and shrinkage on the interface of steel-concrete composite beams[J]. Structural Engineers, 2009, 25 (1): 41-44, 54. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC200901010.htm
    [30]
    CHEN Quan. Effects of thermal loads on texas steel bridges[D]. Austin: University of Texas at Austin, 2008.
    [31]
    SUN Guo-chen, GUAN Rong-cai, JIANG Ying-min, et al. Sunshine-induced temperature distribution on cross section of steel-concrete composite beams[J]. Engineering Mechanics, 2006, 23 (11): 122-127, 138. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200611019.htm
    [32]
    AU F T K, CHEUNG S K, THAM L G. Design thermal loading for composite bridges in tropical region[J]. Steel and Composite Structures, 2002, 2 (6): 441-460.

Catalog

    Article Metrics

    Article views (980) PDF downloads(808) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return