WU Qing-xiong, HUANG Wan-kun, CHEN Bao-chun, CHEN Kang-ming, ZHONG Cun-sheng-san. Mechanical property of hinged voided slab with perforated steel plates at bottom of junction surface[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 45-54.
Citation: WU Qing-xiong, HUANG Wan-kun, CHEN Bao-chun, CHEN Kang-ming, ZHONG Cun-sheng-san. Mechanical property of hinged voided slab with perforated steel plates at bottom of junction surface[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 45-54.

Mechanical property of hinged voided slab with perforated steel plates at bottom of junction surface

More Information
  • Author Bio:

    WU Qing-xiong(1973-), male, researcher, PhD, +86-591-83358433, wuqingx@fzu.edu.cn

  • Received Date: 2017-05-13
  • Publish Date: 2017-08-25
  • In view of the weakest point of hinged voided slab bridge, namely hinged joint, a kind of voided slab with perforated steel plates at the bottom of hinged joint-to-voided slab interface was put forward, the perforated steel plates were used to change the crack propagating path at the interface, so as to delay the formation of through crack at the hinged joint-to-voided slab interface, and the full-scale model experiment on 8 m-span hinged voided slab was conducted. Based on the experiment and nonlinear finite element (FE) analysis, the result was compared with the experiment result of hinged voided slab with gate-type steel bars at the bottom of interface. Analysis result shows that when the experiment load is 100 kN (1.43 times vehicle load), the lateral crack emerges in the mid-span of voided slab, the integral rigidity of voided slabdecreases, and the stress state of voided slab comes into elastoplastic stage from elastic stage. The test load is applied up to 300 kN (4.29 times vehicle load), no crack is detected at the bottom of hinged joint-to-voided slab interface during the entire loading process. For hinged voided slab with gate-type steel bars at the bottom of hinged joint-to-voided slab interface, the crack extends from the bottom to the top along the interface, and then forms a through crack. However, for the hinged joint-to-voided slab interface with perforated steel plates, after the crack propagates along the interface to the bottom of perforated steel plate, the expansion of the crack needs to bypass the perforated steel plate, so that the joint concrete below the perforated steel plate cracks, and then the crack expands upward along the junction surface above the perforated steel plate until the formation of through crack. The joint cracking load increases from 69 kN (0.99 times vehicle load) for the interface with gate-type steel bars to 314 kN (4.49 times vehicle load), and increases by 3.50 times. The through-crack-formation load increases from 199 kN (2.84 times vehicle load) for the junction surface with gate-type steel bars to 489 kN (6.99 times vehicle load), and increases by 4.51 times. It can be seen that the extension path of crack changes after the perforated steel plate is set at the bottom of junction surface, which slows down the cracking of the junction surface between the voided slab and the hinged joint.

     

  • loading
  • [1]
    HANNA K, MORCOUS G, TADROS M K. Adjacent box girders without internal diaphragms or posttensioned joints[J]. PCI Journal, 2011, 56 (4): 51-64. doi: 10.15554/pcij.09012011.51.64
    [2]
    YAMANE T, TADROS M K, ARUMUGASAMY P. Short to medium span precast prestressed concrete bridges in Japan[J]. PCI Journal, 1994, 49 (2): 74-100.
    [3]
    PISANTY A. The shear strength of extruded hollow-core slabs[J]. Materials and Structures, 1992, 25 (4): 224-230. doi: 10.1007/BF02473067
    [4]
    HANNA K E. Behavior of adjacent precast prestressed concrete box girder bridges[D]. Lincoln: University of Nebraska, 2008.
    [5]
    BARAN E. Effects of cast-in-place concrete topping on flexural response of precast concrete hollow-core slabs[J]. Engineering Structures, 2015, 98: 109-117. doi: 10.1016/j.engstruct.2015.04.017
    [6]
    DONG X H. Traffic forces and temperature effects on shear key connection for adjacent box girder bridge[D]. Cincinnati: University of Cincinnati, 2002.
    [7]
    ELGABBAS F, EL-GHANDOUR A A, ABDELRAHMAN A A, et al. Different CFRP strengthening techniques for prestressed hollow core concrete slabs: experimental study and analytical investigation[J]. Composite Structures, 2010, 92: 401-411. doi: 10.1016/j.compstruct.2009.08.015
    [8]
    AGUADO J V, ESPINOS A, HOSPITALER A, et al. Influence of reinforcement arrangement in flexural fire behavior of hollow core slabs[J]. Fire Safety Journal, 2012, 53: 72-84. doi: 10.1016/j.firesaf.2012.06.015
    [9]
    CUENCA E, SERNA P. Failure modes and shear design of prestressed hollow core slabs made of fiber-reinforced concrete[J]. Composites Part B: Engineering, 2013, 45 (1): 952-964. doi: 10.1016/j.compositesb.2012.06.005
    [10]
    LI Hai-tao, DEEKS A J, LIU Li-xin, et al. Moment transfer factors for column-supported cast-in-situ hollow core slabs[J]. Journal of Zhejiang University—Science A, 2012, 13 (3): 165-173. doi: 10.1631/jzus.A1100170
    [11]
    JIANG Yun-xia, CHAI Jin-yi, WU Bi-qing, et al. Research on strengthening hinged slab bridge under uninterrupted traffic[J]. Highways and Transportation in Inner Mongolia, 2002 (2): 1-3. (in Chinese). doi: 10.3969/j.issn.1005-0574.2002.02.002
    [12]
    QIAO Xue-li. Failure mechanism and prevention measures on hinged joints in hinged voided slab[D]. Xi'an: Chang'an University, 2008. (in Chinese).
    [13]
    YANG Ji-xin. Study on mechanical properties of fabricated hollow slab bridge hinge joint under the load[D]. Hohhot: Inner Mongolia University of Technology, 2009. (in Chinese).
    [14]
    WANG Qu, WU Qing-xiong, CHEN Bao-chun. Experimental study on failure mode of hinged joint in assembly voided slab bridge[J]. Engineering Mechanics, 2014, 31 (S1): 115-120. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2014S1022.htm
    [15]
    CHEN Yue-chi, WU Qing-xiong, CHEN Bao-chun. Failure mode of hinged joint in assembly voided slab by finite element analysis[J]. Engineering Mechanics, 2014, 31 (S1): 51-58. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2014S1012.htm
    [16]
    YE Jian-shu, LIU Jiu-sheng, YU Bo, et al. Experiment on shear property of hinge joints of concrete hollow slab[J]. Journal of Highway and Transportation Research and Development, 2013, 30 (6): 33-39. (in Chinese). doi: 10.3969/j.issn.1002-0268.2013.06.007
    [17]
    WU Qing-xiong, CHEN Yue-chi, CHEN Kang-ming. Failure mode analysis of hinged voided slab with gate-type steel rebars at bottom of junction surface[J]. Journal of Traffic and Transportation Engineering, 2015, 15 (3): 15-25. (in Chinese). http://transport.chd.edu.cn/article/id/201704005
    [18]
    CHEN Jian-hua. Force analysis and prevention measures on the single beam of voided slab[J]. Journal of China and Foreign Highway, 2007 (3): 118-121. (in Chinese). doi: 10.3969/j.issn.1671-2579.2007.03.030
    [19]
    ZHANG Zhi. Hollow plate hinge seam failure mechanism and prevention measure research[J]. Shanxi Architecture, 2009, 35 (2): 318-320. (in Chinese). doi: 10.3969/j.issn.1009-6825.2009.02.201
    [20]
    BO Xiang-zhao. The development and application of the HGM high-strength shrinkage-free grouting material[J]. Traffic Engineering and Technology for National Defence, 2006, 4 (3): 58-60. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GFJT200603019.htm
    [21]
    CHEN Kang-ming, WU Qing-xiong, HUANG Wan-kun, et al. Parameter analysis on mechanical property of hinged voided slab with gate-type steel bars at the bottom part of junction surface[J]. Journal of Highway and Transportation Research and Development, 2016, 33 (8): 65-75. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201608011.htm
    [22]
    YUAN Ji-qiu, GRAYBEAL B. Full-scale testing of shear key details for precast concrete box-beam bridges[J]. Journal of Bridge Engineering, 2016, 21 (9): 1-14.
    [23]
    HUSSEIN H H, SARGAND S M, AL-JHAYYISH A K, et al. Contribution of transverse tie bars to load transfer in adjacent prestressed box-girder bridges with partial depth shear key[J]. Journal of Performance of Constructed Facilities, 2017, 31 (2): 1-11.
    [24]
    HUSSEIN H H, SARGAND S M, RIKABI F T A, et al. Laboratory evaluation of ultrahigh-performance concrete shear key for prestressed adjacent precast concrete box girder bridges[J]. Journal of Bridge Engineering, 2017, 22 (2): 1-13.
    [25]
    LI Hai-min. Experimental study on crack controlling applied in hinge of fabricated hollow slab bridges[D]. Fuzhou: Fuzhou University, 2014. (in Chinese).

Catalog

    Article Metrics

    Article views (629) PDF downloads(694) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return