LIN Shang-shun, HUANG Qing-wei, CHEN Bao-chun, CHEN Yang-hong. Design of U-RC composite pier of sea-crossing bridge[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 55-65.
Citation: LIN Shang-shun, HUANG Qing-wei, CHEN Bao-chun, CHEN Yang-hong. Design of U-RC composite pier of sea-crossing bridge[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 55-65.

Design of U-RC composite pier of sea-crossing bridge

More Information
  • Author Bio:

    LIN Shang-shun(1972-), male, associate professor, PhD, +86-591-22863252, midas2008@126.com

    HUANG Qing-wei(1982-), male, associate researcher, PhD, +86-591-22865349, 9380226@qq.com

  • Received Date: 2017-03-22
  • Publish Date: 2017-08-25
  • In order to solve the construction and anti-corrosion problems of pier of sea-crossing bridge, a new structure of composite pier of ultra-high performance concrete (UHPC) and reinforced concrete (RC) (short for U-RC composite pier) was designed, and UHPC cylinder was taken as permanent cylinder to cast core reinforced concrete. The Pingtan Strait Bridge was taken as project background, the structure design and calculation of U-RC composite pier were carried out, and the workload and cost of U-RC composite pier were compared with the ones of original design scheme. The ultimate bearing capacity tests of three core reinforced concrete columns, three UHPC cylinders and three U-RC composite piers were carried out, the longitudinal andtransverse strains of concrete for the specimens were measured, the failure modes and the developments of cracks were observed, the test values of ultimate bearing capacities were obtained, and the mechanical properties of U-RC composite pier were analyzed. Research result indicates that the bearing capacity of U-RC composite pier is greater than the design value of internal force, which meets the current specification requirement. The design scheme that adopts UHPC cylinder to replace steel template, can save about 2 410 tof steel, and the total cost saves nearly 30%. The average bearing capacities of three UHPC cylinders and three RC columns are1 342 kN and 1 370 kN, respectively, and their sum is less than the average bearing capacity of three U-RC composite piers (3 033 kN), which indicates that the UHPC cylinder has certain confinement effect for core concrete, and it is feasible and conservative to calculate the ultimate bearing capacity of U-RC pier under axial compression with simple superposition method. In the axial compression experiment, the failure mode of U-RC composite pier is that the lateral deformation of core concrete leads to the vertical fracture of UHPC cylinder and the separation of UHPC and core concrete at the interface. At the ultimate load, the coating UHPC layers have vertical cracks that grow with the increase of the load, and the flaking and spalling phenomena of concrete appear. But when the U-RC composite pier is damaged, the longitudinal strain of coating UHPC does not reach the ultimate compressive strain.

     

  • loading
  • [1]
    吕忠达. 杭州湾跨海大桥关键技术研究与实施[J]. 土木工程学报, 2006, 39 (6): 78-82. doi: 10.3321/j.issn:1000-131X.2006.06.014

    LU Zhong-da. Key technologies for Hangzhou Bay Bridge[J]. China Civil Engineering Journal, 2006, 39 (6): 78-82. (in Chinese). doi: 10.3321/j.issn:1000-131X.2006.06.014
    [2]
    叶华成. 上海长江大桥水上非通航孔墩身预制安装技术[J]. 桥梁建设, 2007 (5): 55-58. doi: 10.3969/j.issn.1003-4722.2007.05.016

    YE Hua-cheng. Techniques for precasting and installation of pier shafts of non-navigable spans of Shanghai Changjiang River Bridge[J]. Bridge Construction, 2007 (5): 55-58. (in Chinese). doi: 10.3969/j.issn.1003-4722.2007.05.016
    [3]
    郭熙冬. 港珠澳大桥承台墩身工厂化预制施工技术[J]. 桥梁建设, 2014, 44 (2): 107-111. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201402019.htm

    GUO Xi-dong. Construction techniques for factory precasting of pile caps and pier shafts of Hong Kong-Zhuhai-Macao Bridge[J]. Bridge Construction, 2014, 44 (2): 107-111. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201402019.htm
    [4]
    RICHARD P, CHEYREZY M. Composition of reactive powder concretes[J]. Cement and Concrete Research, 1995, 25 (7): 1501-1511. doi: 10.1016/0008-8846(95)00144-2
    [5]
    CWIRZEN A, PENTTALA V, VORNANEN C. Reactive powder based concretes: mechanical properties, durability and hybrid use with OPC[J]. Cement and Concrete Research, 2008, 38 (10): 1217-1226. doi: 10.1016/j.cemconres.2008.03.013
    [6]
    陈宝春, 季韬, 黄卿维, 等. 超高性能混凝土(UHPC) 研究综述[J]. 建筑科学与工程学报, 2014, 31 (3): 1-24. doi: 10.3969/j.issn.1673-2049.2014.03.002

    CHEN Bao-chun, JI Tao, HUANG Qing-wei, et al. Review of research on ultra-high performance concrete[J]. Journal of Architecture and Civil Engineering, 2014, 31 (3): 1-24. (in Chinese). doi: 10.3969/j.issn.1673-2049.2014.03.002
    [7]
    杜任远, 黄卿维, 陈宝春. 活性粉末混凝土桥梁应用与研究[J]. 世界桥梁, 2013, 41 (1): 69-74. https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL201301016.htm

    DU Ren-yuan, HUANG Qing-wei, CHEN Bao-chun. Application and study of reactive powder concrete to bridge engineering[J]. World Bridges, 2013, 41 (1): 69-74. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL201301016.htm
    [8]
    陈宝春, 黄卿维, 王远洋, 等. 中国第一座超高性能混凝土(UHPC) 拱桥的设计与施工[J]. 中外公路, 2016, 36 (1): 67-71. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201601017.htm

    CHEN Bao-chun, HUANG Qing-wei, WANG Yuan-yang, et al. Design and construction of the first UHPC arch bridge in China[J]. Journal of China and Foreign Highway, 2016, 36 (1): 67-71. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201601017.htm
    [9]
    HABEL K, VIVIANI M, DENARIE, et al. Development of the mechanical properties of an ultra-high performance fiber reinforced concrete (UHPFRC)[J]. Cement and Concrete Research, 2006, 36 (7): 1362-1370. doi: 10.1016/j.cemconres.2006.03.009
    [10]
    KASSIR M K, GHOSN M. Chloride-induced corrosion of reinforced concrete bridge decks[J]. Cement and Concrete Research, 2002, 32 (1): 139-143. doi: 10.1016/S0008-8846(01)00644-5
    [11]
    余红发, 孙伟, 麻海燕, 等. 混凝土在多重因素作用下的氯离子扩散方程[J]. 建筑材料学报, 2002, 5 (3): 240-247. doi: 10.3969/j.issn.1007-9629.2002.03.008

    YU Hong-fa, SUN Wei, MA Hai-yan, et al. Diffusion equations of chloride ion in concrete under the combined action of durability factors[J]. Journal of Building Materials, 2002, 5 (3): 240-247. (in Chinese). doi: 10.3969/j.issn.1007-9629.2002.03.008
    [12]
    牛荻涛. 海洋环境下混凝土强度的经时变化模型[J]. 西安建筑科技大学学报: 自然科学版, 1995, 27 (1): 49-52. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJZ501.010.htm

    NIU Di-tao. Changing models of concrete strength along with time in marine environment[J]. Journal of Xi'an University of Architecture and Technology: Natural Science Edition, 1995, 27 (1): 49-52. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAJZ501.010.htm
    [13]
    戴兰芳, 梁旭黎, 赵胜涛, 等. 活性粉末混凝土(RPC) 的强度和耐久性分析[J]. 河北大学学报: 自然科学版, 2006, 25 (6): 583-586. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDD200506005.htm

    DAI Lan-fang, LIANG Xu-li, ZHAO Sheng-tao, et al. Analysis of the strength and durability for reactive powder concrete[J]. Journal of Hebei University: Natural Science Edition, 2006, 25 (6): 583-586. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HBDD200506005.htm
    [14]
    郝文秀, 阎贵平, 钟铁毅, 等. 反复荷载作用下活性粉末混凝土空心桥墩力学性能的试验研究[J]. 铁道学报, 2009, 31 (5): 60-64. doi: 10.3969/j.issn.1001-8360.2009.05.010

    HAO Wen-xiu, YAN Gui-ping, ZHONG Tie-yi, et al. Experimental study on the mechanical behavior of reactive powder concrete piers with hollow cross-sections subjected to cyclic loading[J]. Journal of the China Railway Society, 2009, 31 (5): 60-64. (in Chinese). doi: 10.3969/j.issn.1001-8360.2009.05.010
    [15]
    卜良桃, 鲁晨, 朱健. 水泥钢纤维砂浆钢筋网加固矩形混凝土偏压柱试验研究[J]. 湖南大学学报: 自然科学版, 2013, 40 (3): 15-20. doi: 10.3969/j.issn.1674-2974.2013.03.003

    BU Liang-tao, LU Chen, ZHU Jian. Experimental study of RC columns strengthened with steel fiber cement motar with mesh reinforcement under eccentric loading[J]. Journal of Hunan University: Natural Sciences, 2013, 40 (3): 15-20. (in Chinese). doi: 10.3969/j.issn.1674-2974.2013.03.003
    [16]
    王钧, 陈旭, 李行, 等. 配有钢纤维RPC永久柱模的RC框架静力性能试验[J]. 沈阳建筑大学学报: 自然科学版, 2014, 30 (1): 9-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ201401003.htm

    WANG Jun, CHEN Xu, LI Hang, et al. Static experimental on reinforced concrete frame structures with steel fiber RPC permanent pillar[J]. Journal of Shenyang Jianzhu University: Natural Science, 2014, 30 (1): 9-17. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ201401003.htm
    [17]
    胡源. 活性粉末混凝土预制管混凝土组合柱轴心抗压性能研究[D]. 长沙: 湖南大学, 2015.

    HU yuan. The axial compressive performance study of a reactive powder concrete precast tube concrete composite columns[D]. Changsha: Hunan University, 2015. (in Chinese).
    [18]
    单波, 刘志, 肖岩, 等. RPC预制管混凝土组合柱组合效应试验研究[J]. 湖南大学学报: 自然科学版, 2017, 44 (3): 88-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201703011.htm

    SHAN Bo, LIU Zhi, XIAO Yan, et al. Experimental research on composite action of concrete-filled RPC tube under axial load[J]. Journal of Hunan University: Natural Sciences, 2017, 44 (3): 88-96. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201703011.htm
    [19]
    张荣辉, 何远航, 张钦. 水性环氧树脂与水泥复合的胶砂强度分析及其咸潮区桥梁墩柱加固应用[J]. 混凝土, 2006 (8): 101-104. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF200708031.htm

    ZHANG Rong-hui, HE Yuan-hang, ZHANG Qin. Analysis of glue sand intension compounded by water-epoxy resin and cement and reinforce application of bridge frusta pole in salted tide section[J]. Concrete, 2006 (8): 101-104. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF200708031.htm
    [20]
    杜任远. 活性粉末混凝土梁、拱极限承载力研究[D]. 福州: 福州大学, 2014.

    DU Ren-yuan. Research on ultimate load-carrying capacities of reactive powder concrete (RPC) box girder and arch[D]. Fuzhou: Fuzhou University, 2014. (in Chinese).
    [21]
    李学斌, 杨心怡, 李东升, 等. 节段梁环氧树脂胶接缝抗拉强度的试验研究[J]. 铁道建筑, 2015 (1): 23-26. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201501005.htm

    LI Xue-bin, YANG Xin-yi, LI Dong-sheng, et al. Experimental study on tensile strength of epoxy resin glued joint in segmental girders[J]. Railway Engineering, 2015 (1): 23-26. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201501005.htm
    [22]
    陈贵田, 张锦松, 夏宏江. 有底混凝土吊箱在青岛海湾大桥承台桥墩施工中的设计与应用[J]. 水运工程, 2010 (5): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC201005037.htm

    CHEN Gui-tian, ZHANG Jin-song, XIA Hong-jiang. Design and application of hanging concrete box with bottom board in bearing platform and bridge pier construction of Qingdao Bay Bridge[J]. Port and Waterway Engineering, 2010 (5): 132-137. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC201005037.htm
    [23]
    林葵. 宽滩涂强冲刷跨海大桥墩身基础施工技术[J]. 铁道建筑技术, 2013 (2): 16-20. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJS201302006.htm

    LIN kui. Construction technology on foundation and pier of large sea-crossing bridge with broad foreshore and strong scour[J]. Railway Construction Technology, 2013 (2): 16-20. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJS201302006.htm
    [24]
    陈宝春, 林上顺. 混凝土偏压柱承载力计算方法[J]. 交通运输工程学报, 2014, 14 (1): 18-25. http://transport.chd.edu.cn/article/id/201401003

    CHEN Bao-chun, LIN Shang-shun. Calculation methods of bearing capacities of eccentrically loaded concrete columns[J]. Journal of Traffic and Transportation Engineering, 2014, 14 (1): 18-25. (in Chinese). http://transport.chd.edu.cn/article/id/201401003
    [25]
    林上顺, 陈宝春. 素混凝土柱极限承载力计算方法[J]. 交通运输工程学报, 2015, 15 (2): 22-31. doi: 10.19818/j.cnki.1671-1637.2015.02.003

    LIN Shang-shun, CHEN Bao-chun. Calculation method of ultimate bearing capacity for plain concrete column[J]. Journal of Traffic and Transportation Engineering, 2015, 15 (2): 22-31. (in Chinese). doi: 10.19818/j.cnki.1671-1637.2015.02.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (696) PDF downloads(898) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return