Citation: | LIANG Xing-xin, YAN Xin-ping, LIU Zheng-lin, OUYANG Wu, JIN Yong, FU Yi-feng. Design and performance analysis of water-lubricated tilting pad thrust bearing[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 89-97. |
[1] |
DUBAS A J. Robust automated computational fluid dynamics analysis and design optimisation of rim driven thrusters[D]. Southampton: University of Southampton, 2014.
|
[2] |
谈微中, 严新平, 刘正林, 等. 无轴轮缘推进系统的研究现状与展望[J]. 武汉理工大学学报: 交通科学与工程版, 2015, 39 (3): 601-605. doi: 10.3963/j.issn.2095-3844.2015.03.033
TAN Wei-zhong, YAN Xin-ping, LIU Zheng-lin, et al. Technology development and prospect of shaftless rim-driven propulsion system[J]. Journal of Wuhan University of Technology: Transportation Science and Engineering, 2015, 39 (3): 601-605. (in Chinese). doi: 10.3963/j.issn.2095-3844.2015.03.033
|
[3] |
LEA M, THOMPSON D, VAN BLARCOM B, et al. Scale model testing of a commercial rim-driven propulsor pod[J]. Journal of Ship Production, 2003, 19 (2): 121-130. doi: 10.5957/jsp.2003.19.2.121
|
[4] |
吴铸新, 刘正林, 王隽, 等. 水润滑轴承推力瓦块材料摩擦磨损试验研究[J]. 兵工学报, 2011, 32 (1): 118-123. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201101021.htm
WU Zhu-xin, LIU Zheng-lin, WANG Jun, et al. Research on friction and wear testing of pad materials of waterlubricated thrust bearings[J]. Acta Armamentarii, 2011, 32 (1): 118-123. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201101021.htm
|
[5] |
张圣东, 刘正林. 船用水润滑橡胶尾轴承静刚度计算模型[J]. 交通运输工程学报, 2013, 13 (5): 61-66. doi: 10.3969/j.issn.1671-1637.2013.05.009
ZHANG Sheng-dong, LIU Zheng-lin. Static stiffness calculation model of water-lubricated rubber stern tube bearing[J]. Journal of Traffic and Transportation Engineering, 2013, 13 (5): 61-66. (in Chinese). doi: 10.3969/j.issn.1671-1637.2013.05.009
|
[6] |
WANG Xiao-lei, KATO K, ADACHI K, et al. Loads carrying capacity map for the surface texture design of SiC thrust bearing sliding in water[J]. Tribology International, 2003, 36 (3): 189-197. doi: 10.1016/S0301-679X(02)00145-7
|
[7] |
STANMORE L K, MCALESTER W P, ZEIDAN F Y, et al. Low viscosity, process lubricated thrust bearings for magdrive pumps[J]. World Pumps, 1995 (341): 54-56, 58-61.
|
[8] |
WANG X, YAMAGUCHI A. Characteristics of hydrostatic bearing/seal parts for water hydraulic pumps and motors. Part 1: Experiment and theory[J]. Tribology International, 2002, 35 (7): 425-433. doi: 10.1016/S0301-679X(02)00023-3
|
[9] |
HYUGA H, HIRAO K, JONES M I, et al. Processing and tribological properties of Si3N4/carbon short fiber composites[J]. Journal of the American Ceramic Society, 2010, 86 (7): 1081-1087.
|
[10] |
何春勇, 刘正林, 吴铸新. 潜水泵水润滑推力轴承润滑性能数值分析[J]. 润滑与密封, 2010, 35 (8): 59-62. doi: 10.3969/j.issn.0254-0150.2010.08.016
HE Chun-yong, LIU Zheng-lin, WU Zhu-xin. Numerical analysis of lubricating properties of submersible pump water lubricated thrust bearing[J]. Lubrication Engineering, 2010, 35 (8): 59-62. (in Chinese). doi: 10.3969/j.issn.0254-0150.2010.08.016
|
[11] |
GODEC E, VIRONE J, TELLER O. Recent advances in waterlubricated bearings[J]. Hydropower and Dams, 2009 (6): 89-93.
|
[12] |
OUYANG Wu, YUAN Xiao-yang, JIA Qian. Analysis of tilting pad thrust bearing static instability and lubrication performance under the bistability[J]. Industrial Lubrication and Tribology, 2014, 66 (5): 584-592. doi: 10.1108/ILT-08-2012-0069
|
[13] |
GERASIMOV V S, NIKIFOROV S A, PAUTOV Y M, et al. Development of high-load water-lubricated radial-axial bearings for electric-pump units in the first loop of a nuclear power plant[J]. Atomic Energy, 2000, 89 (6): 1027-1030. doi: 10.1023/A:1011379106266
|
[14] |
LEE S, MLLER M, RATOI-SALAGEAN M, et al. Boundary Lubrication of oxide surfaces by poly (L-lysine) -g-poly (ethylene glycol) (PLL-g-PEG) in aqueous media[J]. Tribology Letters, 2003, 15 (3): 231-239. doi: 10.1023/A:1024861119372
|
[15] |
INOUE K, DEGUCHI K, OKUDE K, et al. Development of the water-lubricated thrust bearing of the hydraulic turbine generator[C]∥IOP. 26th IAHR Symposium on Hydraulic Machinery and Systems. Bristol: IOP, 2012: 19-23.
|
[16] |
黄滨, 吴军令, 武中德, 等. 双向推力轴承支承结构对润滑性能的影响[J]. 排灌机械工程学报, 2012, 30 (6): 690-694. doi: 10.3969/j.issn.1674-8530.2012.06.014
HUANG Bin, WU Jun-ling, WU Zhong-de, et al. Effects of support structure on lubricating properties of bi-directional thrust bearings[J]. Journal of Drainage and Irrigation Machinery Engineering, 2012, 30 (6): 690-694. (in Chinese). doi: 10.3969/j.issn.1674-8530.2012.06.014
|
[17] |
张秀丽, 蒋丹, 尹忠慰, 等. 基于CFD的水润滑斜面推力轴承承载能力分析[J]. 东华大学学报: 自然科学版, 2013, 39 (4): 411-416. doi: 10.3969/j.issn.1671-0444.2013.04.004
ZHANG Xiu-li, JIANG Dan, YIN Zhong-wei, et al. Load capacity analysis of water lubricated tapered-land thrust bearing based on CFD[J]. Journal of Donghua University: Natural Science, 2013, 39 (4): 411-416. (in Chinese). doi: 10.3969/j.issn.1671-0444.2013.04.004
|
[18] |
张霞, 王新荣, 王晓霞. 提高水润滑推力轴承承载力方法研究[J]. 中国科技信息, 2010 (12): 175-176. https://www.cnki.com.cn/Article/CJFDTOTAL-XXJK201012083.htm
ZHANG Xia, WANG Xin-rong, WANG Xiao-xia. Study on method of improving bearing capacity of water lubricated thrust bearing[J]. China Science and Technology Information, 2010 (12): 175-176. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XXJK201012083.htm
|
[19] |
刘宪伟. 面向绿色开采的低粘度介质润滑理论及应用研究[D]. 北京: 中国矿业大学, 2008.
LIU Xian-wei. Study on the theory and applications of the low viscosity lubricants for green mining[D]. Beijing: China University of Mining and Technology, 2008. (in Chinese).
|
[20] |
KENNEDY G C, HOLT J K. Developing a high efficiency means of propulsion for underwater vehicles[C]∥IEEE. Southcon/95. Conference Record. New York: IEEE, 1995: 352-356.
|
[21] |
HSIEH M F, CHEN J H, YEH Y H, et al. Integrated design and realization of a hub-less rim-driven thruster[C]∥IEEE. The 33rd Annual Conference of the IEEE Industrial Electronics Society. New York: IEEE, 2007: 3033-3038.
|
[22] |
王焕栋. 关于弹性垫支撑自调节受力推力轴承的研究与应用[J]. 水电站机电技术, 2015, 38 (1): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SDJD201501002.htm
WANG Huan-dong. Research and application of self-adjusting forced thrust bearing supported by elastic cushion[J]. Mechanical and Electrical Technique of Hydropower Station, 2015, 38 (1): 5-9. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SDJD201501002.htm
|
[23] |
VAN BEEK A, SEGAL A. Numerical solution for tilted hydrostatic multi-pad thrust bearings of finite length[J]. Tribology International, 1997, 30 (1): 41-46. doi: 10.1016/0301-679X(96)00020-5
|
[24] |
ZHOU Quan, HOU Yu, CHEN Chun-zheng. Dynamic stability experiments of compliant foil thrust bearing with viscoelastic support[J]. Tribology International, 2009, 42 (5): 662-665.
|
[25] |
王守忠. 弹性橡胶垫推力轴承偏心值的选取[J]. 水电站机电技术, 1993 (3): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SDJD199303011.htm
WANG Shou-zhong. The selection of the eccentricity of the elastic rubber pad supported thrust bearing[J]. Mechanical and Electrical Technique of Hydropower Station, 1993 (3): 40-43. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SDJD199303011.htm
|
[26] |
VAN BEEK A, SEGAL A. Rubber supported hydrostatic thrust bearings with rigid bearing surface[J]. Tribology International, 1997, 30 (1): 47-52.
|
[27] |
VAN BEEK A, LEPIC L. Rubber supported hydrostatic thrust bearings with elastic bearing surfaces of infinite length[J]. Wear, 1996, 201 (1/2): 45-50.
|