JIAO Yun-long, DONG Lei, LIU Xiao-jun, LIU Kun. Spreading features of droplet on micro-textured surface[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 98-105.
Citation: JIAO Yun-long, DONG Lei, LIU Xiao-jun, LIU Kun. Spreading features of droplet on micro-textured surface[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 98-105.

Spreading features of droplet on micro-textured surface

More Information
  • Author Bio:

    JIAO Yun-long(1990-), male, doctoral student, +86-551-62901756-2733, jiaoyunlong0823@126.com

    LIU Kun(1963-), professor, PhD, +86-551-62901756-2733, liukun@hfut.edu.cn

  • Received Date: 2017-05-02
  • Publish Date: 2017-08-25
  • The dynamics simulation of droplet spreading process on the different micro-textured surfaces was studied on the basis of Flow-3 D, and the moving mechanism of triple contact line was proposed. The spreading scaling laws of contact line, the spreading velocity and the final spreading radius were used to evaluate the spreading features of droplet on the micro-textured surfaces. Test result shows that droplet on the micro-textured and smooth surfaces meets two corresponding spreading scaling laws respectively. The contact area between solid and liquid increases because of the micro-textures. Because the excess driving force is obtained in the spreading process of droplet, both the spreading velocity and the final spreading radius increase. The final spreading radius on the micro-textured surface with square pits increases from 1.05 mm to 1.30 mm, and the maximum radius on the surface with square bulges is 1.62 mm. Micro-bulge is more beneficial to promote droplet spreading compared with micro-pit. Because of the existence of micro-bulges, the contact area between solid and liquid increases rapidly, the excess driving force is obtained in spreading process of droplet, the micro-channels between micro-bulges form, so the triple contact line keeps continuous feature all the time. While on the textured surface with micro-pits, the triple contact line is pinned in the micro-pits despite of the increase of contact area between solid and liquid, and the droplet eventually stays at the equilibrium position with the decrease of spreading velocity. Moreover, droplet spreading process has anisotropy on the surface with rectangle texture. The flow velocity parallelled to the micro-texture direction is higher, and the final spreading radius is 1.13 mm, which shows a good spreading feature. While the flow velocity vertical to the micro-texture direction is smaller, the spreading radius is 0.94 mm because of the discontinuity of triple contact line, so the spreading feature is poorer.

     

  • loading
  • [1]
    PAWLAK Z, URBANIAK W, OLOYEDE A. The relationship between friction and wettability in aqueous environment[J]. Wear, 2011, 270 (9/10): 1745-1749.
    [2]
    杨淑燕, 郭峰, 马冲, 等. 固液润湿性对流体动压润滑薄膜的影响[J]. 摩擦学学报, 2010, 30 (2): 203-208. https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201002019.htm

    YANG Shu-yan, GUO Feng, MA Chong, et al. Influences of the liquid/solid wettability on thin hydrodynamic lubrication films[J]. Tribology, 2010, 30 (2): 203-208. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201002019.htm
    [3]
    朱海燕, 张翼, 赵怀瑞, 等. 基于边界层控制的高速列车减阻技术[J]. 交通运输工程学报, 2017, 17 (2): 64-72. doi: 10.3969/j.issn.1671-1637.2017.02.007

    ZHU Hai-yan, ZHANG Yi, ZHAO Huai-rui, et al. Drag reduction technology of high-speed train based on boundary layer control[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (2): 64-72. (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.02.007
    [4]
    周海超, 梁晨, 杨建, 等. 提升轮胎抗滑水性能的仿生方法[J]. 机械工程学报, 2015, 51 (8): 125-130. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201508018.htm

    ZHOU Hai-chao, LIANG Chen, YANG Jian, et al. Bionic method for improving tire anti-hydroplaning performance[J]. Journal of Mechanical Engineering, 2015, 51 (8): 125-130. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201508018.htm
    [5]
    YOUNG T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95: 65-87. doi: 10.1098/rstl.1805.0005
    [6]
    WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial and Engineering Chemistry, 1936, 28 (8): 988-994. doi: 10.1021/ie50320a024
    [7]
    CASSIE A B D, BAXTER S. Large contact angles of plant and animal surfaces[J]. Nature, 1945, 155 (3923): 21-22. doi: 10.1038/155021a0
    [8]
    程帅, 董云开, 张向军. 规则粗糙固体表面液体浸润性对表观接触角影响的研究[J]. 机械科学与技术, 2007, 26 (7): 822-827. doi: 10.3321/j.issn:1003-8728.2007.07.002

    CHENG Shuai, DONG Yun-kai, ZHANG Xiang-jun. Study of the influence of apparent contactangle on regular rough surface considering liquid wetting properties[J]. Mechanical Science and Technology for Aerospace Engineering, 2007, 26 (7): 822-827. (in Chinese). doi: 10.3321/j.issn:1003-8728.2007.07.002
    [9]
    杨常卫, 何枫, 郝鹏飞. 微结构疏水表面上液滴的表观接触角[J]. 中国科学: 化学, 2010, 40 (10): 1545-1549. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK201010010.htm

    YANG Chang-wei, HE Feng, HAO Peng-fei. The apparent contact angle on the micro-structured hydrophobic surface[J]. Scientia Sinica: Chimica, 2010, 40 (10): 1545-1549. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK201010010.htm
    [10]
    陈晓玲, 吕田. 粗糙表面液滴表观形态研究[J]. 中国科学: 物理学力学天文学, 2009, 39 (1): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK200901009.htm

    CHEN Xiao-ling, LU Tian. Study of apparent shape of the droplet on rough surface[J]. Scientia Sinica: Physics, Mechanica and Astronomica, 2009, 39 (1): 58-62. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK200901009.htm
    [11]
    BLAKE T D. The physics of moving wetting line[J]. Journal of Colloid and Interface Science, 2006, 299 (1): 1-13. doi: 10.1016/j.jcis.2006.03.051
    [12]
    ORAN A, DAVIS S H, BANKOFF S G. Long-scale evolution of thin liquid films[J]. Reviews of Modern Physics, 1997, 69 (3): 931-980. doi: 10.1103/RevModPhys.69.931
    [13]
    DE GENNES P G. Wetting: statics and dynamics[J]. Reviews of Modern Physics, 1985, 57 (3): 827-863. doi: 10.1103/RevModPhys.57.827
    [14]
    LEGENDRE D, MAGLIO M. Comparison between numerical models for the simulation of moving contact lines[J]. Computer and Fluids, 2015, 113: 2-13. doi: 10.1016/j.compfluid.2014.09.018
    [15]
    BARENBLATT G I, BERETTA E, BERTSCH M. The problem of the spreading of a liquid film along a solid surface: a new mathematical formulation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94 (19): 10024-10030. doi: 10.1073/pnas.94.19.10024
    [16]
    TANNER L. The spreading of silicone oil drops on horizontal surfaces[J]. Journal of Physics D: Applied Physics, 1979, 83 (9): 1473-1484.
    [17]
    YUAN Quan-zi, ZHAO Ya-pu. Multiscale dynamic wetting of a droplet on a lyophilic pillar-arrayed surface[J]. Journal of Fluid Mechanics, 2013, 716 (2): 171-188.
    [18]
    YUAN Quan-zi, ZHAO Ya-pu. Wetting on flexible hydrophilic pillar-arrays[J]. Scientific Reports, 2013, 3 (6), DOI: 10.1038/srep01944.
    [19]
    BONN D, EGGERS J, INDEKEU J, et al. Wetting and spreading[J]. Reviews of Modern Physics, 2009, 81 (2): 739-805.
    [20]
    PUJADO P R, HUH C, SCRIVEN L E. On the attribution of an equation of capillarity to Young and Laplace[J]. Journal of Colloid and Interface Science, 1972, 38 (3): 662-663.
    [21]
    焦云龙, 刘小君, 逄明华, 等. 固体表面液滴铺展与润湿接触线的移动分析[J]. 物理学报, 2016, 65 (1): 016801-1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201601040.htm

    JIAO Yun-long, LIU Xiao-jun, PANG Ming-hua, et al. Analyses of droplet spreading and the movement of wetting line on a solid surface[J]. Acta Physica Sinica, 2016, 65 (1): 016801-1-8. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201601040.htm
    [22]
    KIM S J, MOON M W, LEE K R, et al. Liquid spreading on superhy drophilic micropil lararrays[J]. Journal of Fluid Mechanics, 2011, 680: 477-487.
    [23]
    SHANAHAN M E R. Simple theory of"stick-slip"wetting hysteresis[J]. Langmuir, 1995, 11 (3): 1041-1043.
    [24]
    焦云龙, 刘小君, 刘焜. 离散型织构表面液滴的铺展及其接触线的力学特性分析[J]. 力学学报, 2016, 48 (2): 353-360. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201602011.htm

    JIAO Yun-long, LIU Xiao-jun, LIU Kun. Mechanical analysis of a droplet spreading on the discrete textured surfaces[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48 (2): 353-360. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201602011.htm
    [25]
    焦云龙, 刘小君, 逄明华, 等. 液滴平壁铺展过程中的滞后效应及力学机制研究[J]. 应用数学和力学, 2016, 37 (1): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX201601003.htm

    JIAO Yun-long, LIU Xiao-jun, PANG Ming-hua, et al. Study of contact angle hysteresis at moving contact lines based on CFD simulation and mechanical analysis[J]. Applied Mathematics and Mechanics, 2016, 37 (1): 14-26. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX201601003.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (646) PDF downloads(670) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return