WANG Jian, MA Xiao-chuan, MA Dao-lin, WANG Ping. Simplified calculation method of critical value of 3D derailment coefficient under quasi-static condition[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 71-80.
Citation: WANG Jian, MA Xiao-chuan, MA Dao-lin, WANG Ping. Simplified calculation method of critical value of 3D derailment coefficient under quasi-static condition[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 71-80.

Simplified calculation method of critical value of 3D derailment coefficient under quasi-static condition

More Information
  • According to the coordinate system transformation relationship in wheel-rail system, the 3 Dstress analysis model of wheel-rail contact spot was established under the quasi-static condition, the formula considering wheelset yaw angle and wheel-rail creep force for calculating3 D derailment coefficient was derived, and the calculation method of critical value of 3 D derailment coefficient was obtained when the wheel was in the critical state of derailment.Taking the LMA wheel tread and CHN60 rail profile as examples, the influence rule of wheelset yawangle and friction coefficient on the critical value of 3 Dderailment coefficient was analyzed and compared with the critical value of Nadal derailment coefficient.To simplify the calculation method of 3 Dderailment coefficient, the ratio relation between the Kalker linear synthetic creep force and the three times of Coulomb friction force was discussed according to Shen-HedrickElkins creep model under different wheelset yaw angles, friction coefficients and vertical forces.Through the analysis of variation rules of the ratios between lateral and longitudinal creep forces with different wheelset yaw angles and friction coefficients, a simplified calculation method of 3 D derailment coefficient was proposed under the quasi-static condition and compared with the exact formula.Analysis result shows that compared with the threshold of 3 Dderailment coefficient, when the wheelset yaw angle is less than 1.5°, the proportion of longitudinal creep force in the tangential force is significantly greater than that of lateral creep force, which causes the threshold of Nadal derailment coefficient to be more conservative.However, when the wheelset yaw angle is larger, the proportion of lateral creep force in the tangential force is more than 90%, and the calculated critical values of 3 Dand Nadal derailment coefficient are basically same.In addition, the wheel-rail contact spot has reached purely sliding state in the critical state of wheel derailment.The ratio between lateral and longitudinal creep force is not affected by the friction coefficient and has a strong linear relation with the wheelset yaw angle.Compared with the exact formula, the error by using the simplified method is within±5%, and the simplified method can meet the requirement of engineering application.

     

  • loading
  • [1]
    关庆华. 列车脱轨机理及运行安全性研究[D]. 成都: 西南交通大学, 2010.

    GUAN Qing-hua. Study on the derailment mechanism and running safety of trains[D]. Chengdu: Southwest Jiaotong University, 2010. (in Chinese).
    [2]
    曾京. 轮对稳态脱轨准则的研究[J]. 铁道学报, 1999, 21 (6): 15-19. doi: 10.3321/j.issn:1001-8360.1999.06.004

    ZENG Jing. Steady-state derailment criteria of a railway wheelset[J]. Journal of the China Railway Society, 1999, 21 (6): 15-19. (in Chinese). doi: 10.3321/j.issn:1001-8360.1999.06.004
    [3]
    俞展猷, 李富达, 李谷. 车轮脱轨及其评价[J]. 铁道学报, 1999, 21 (3): 33-38. doi: 10.3321/j.issn:1001-8360.1999.03.007

    YU Zhan-you, LI Fu-da, LI Gu. Wheel derailment and its evaluation[J]. Journal of the China Railway Society, 1999, 21 (3): 33-38. (in Chinese). doi: 10.3321/j.issn:1001-8360.1999.03.007
    [4]
    BRAGHIN F, BRUNI S, DIANA G. Experimental and numerical investigation on the derailment of a railway wheelset with solid axle[J]. Vehicle System Dynamics, 2006, 44 (4): 305-325. doi: 10.1080/00423110500337494
    [5]
    张卫华, 薛弼一, 吴学杰, 等. 单轮对脱轨试验及其理论分析[J]. 铁道学报, 1998, 20 (1): 39-44. doi: 10.3321/j.issn:1001-8360.1998.01.006

    ZHANG Wei-hua, XUE Bi-yi, WU Xue-jie, et al. Experiment and analysis of the single wheelset derailment[J]. Journal of the China Railway Society, 1998, 20 (1): 39-44. (in Chinese). doi: 10.3321/j.issn:1001-8360.1998.01.006
    [6]
    O'SHEA J J, SHABANA A A. Analytical and numerical investigation of wheel climb at large angle of attack[J]. Nonlinear Dynamics, 2016, 83 (1/2): 555-577.
    [7]
    O'SHEA J J, SHABANA A A. Further investigation of wheel climb initiation: three-point contact[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics, 2017, 231 (1): 121-132. doi: 10.1177/1464419316654402
    [8]
    BARBOSA R S. A 3Dcontact force safety criterion for flange climb derailment of a railway wheel[J]. Vehicle System Dynamics, 2004, 42 (5): 289-300. doi: 10.1080/0042311042000266711
    [9]
    BARBOSA R S. Safety of a railway wheelset-derailment simulation with increasing lateral force[J]. Vehicle System Dynamics, 2009, 47 (12): 1493-1510. doi: 10.1080/00423110802650024
    [10]
    KARMEL A, SWEET L M. Evaluation of time-duration dependent wheel load criteria for wheel climb derailment[J]. Journal of Dynamic Systems, Measurement, and Control, 1981, 103 (3): 219-227. doi: 10.1115/1.3140632
    [11]
    ELKINS J A, CARTER A. Testing and analysis techniques for safety assessment of rail vehicles: the state-of-the-art[J]. Vehicle System Dynamics, 1993, 22 (3/4): 185-208.
    [12]
    张洪, 杨国桢. 关于客车转向架的脱轨和轮重减载问题[J]. 铁道车辆, 2005, 43 (6): 10-16. doi: 10.3969/j.issn.1002-7602.2005.06.003

    ZHANG Hong, YANG Guo-zhen. Derailment and wheel unloading of passenger car bogies[J]. Rolling Stock, 2005, 43 (6): 10-16. (in Chinese). doi: 10.3969/j.issn.1002-7602.2005.06.003
    [13]
    KUO C M, LIN C C. Analysis of derailment criteria[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2016, 230 (4): 1158-1163. doi: 10.1177/0954409715583692
    [14]
    ZENG Jing, WU Ping-bo. Study on the wheel/rail interaction and derailment safety[J]. Wear, 2008, 265 (9): 1452-1459.
    [15]
    WEI Lai, ZENG Jing, WU Ping-bo, et al. Indirect method for wheel-rail force measurement and derailment evaluation[J]. Vehicle System Dynamics, 2014, 52 (12): 1622-1641. doi: 10.1080/00423114.2014.953180
    [16]
    魏来, 曾京, 邬平波, 等. 基于轮对模型的铁道车辆脱轨安全性评估[J]. 铁道学报, 2015, 37 (9): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201509004.htm

    WEI Lai, ZENG Jing, WU Ping-bo, et al. Derailment safety evaluation for railway vehicles based on wheelset model[J]. Journal of the China Railway Society, 2015, 37 (9): 25-31. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201509004.htm
    [17]
    YOKOSE K. A theory of the derailment of wheelset[J]. Quarterly Report of Railway Technical Research Institute, 1966, 7 (3): 30-34.
    [18]
    曾宇清, 王卫东, 舒兴高, 等. 车辆脱轨安全评判的动态限度[J]. 中国铁道科学, 1999, 20 (4): 70-77. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK199904008.htm

    ZENG Yu-qing, WANG Wei-dong, SHU Xing-gao, et al. Dynamic limits for derailment safety evaluation[J]. China Railway Science, 1999, 20 (4): 70-77. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK199904008.htm
    [19]
    关庆华, 曾京, 陈哲明. 考虑冲角影响的改进脱轨准则[J]. 中国铁道科学, 2009, 20 (3): 74-80. doi: 10.3321/j.issn:1001-4632.2009.03.014

    GUAN Qing-hua, ZENG Jing, CHEN Zhe-ming. Improving the derailment criteria by taking the impact of attack angle into account[J]. China Railway Science, 2009, 20 (3): 74-80. (in Chinese). doi: 10.3321/j.issn:1001-4632.2009.03.014
    [20]
    GUAN Qing-hua, ZENG Jing, JIN Xue-song. An angle of attack-based derailment criterion for wheel flange climbing[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2014, 228 (7): 719-729. doi: 10.1177/0954409713490149
    [21]
    杨春雷, 翟婉明. 车辆动力学仿真中评判脱轨的直接方法[J]. 交通运输工程学报, 2002, 2 (3): 23-26. doi: 10.3321/j.issn:1671-1637.2002.03.005

    YANG Chun-lei, ZHAI Wan-ming. Direct method for evaluation of wheel derailment in simulation of railway vehicle dynamics[J]. Journal of Traffic and Transportation Engineering, 2002, 2 (3): 23-26. (in Chinese). doi: 10.3321/j.issn:1671-1637.2002.03.005
    [22]
    陈果, 翟婉明, 左洪福. 车辆脱轨安全限值的调整与改进建议[J]. 中国机械工程, 2002, 13 (8): 646-649. doi: 10.3321/j.issn:1004-132X.2002.08.006

    CHEN Guo, ZHAI Wan-ming, ZUO Hong-fu. Suggestions of adjustment and improvement on vehicle derailment safety limit value[J]. China Mechanical Engineering, 2002, 13 (8): 646-649. (in Chinese). doi: 10.3321/j.issn:1004-132X.2002.08.006
    [23]
    曾庆元, 向俊, 娄平, 等. 列车脱轨的力学机理与防止脱轨理论[J]. 铁道科学与工程学报, 2004, 1 (1): 19-31. doi: 10.3969/j.issn.1672-7029.2004.01.005

    ZENG Qing-yuan, XIANG Jun, LOU Ping, et al. Mechanical mechanism of derailment and theory of derailment prevention[J]. Journal of Railway Science and Engineering, 2004, 1 (1): 19-31. (in Chinese). doi: 10.3969/j.issn.1672-7029.2004.01.005
    [24]
    SHEN Zhi-yun, HEDRICK J K, ELKINS J A. A comparison of alternative creep force models for rail vehicle dynamic analysis[J]. Vehicle System Dynamics, 1983, 12 (1-3): 79-83. doi: 10.1080/00423118308968725
    [25]
    贾小勇, 徐传胜, 白欣. 最小二乘法的创立及其思想方法[J]. 西北大学学报: 自然科学版, 2006, 36 (3): 507-511. doi: 10.3321/j.issn:1000-274X.2006.03.040

    JIA Xiao-yong, XU Chuan-sheng, BAI Xin. The invention and way of thinking on least squares[J]. Journal of Northwest University: Natural Science Edition, 2006, 36 (3): 507-511. (in Chinese. doi: 10.3321/j.issn:1000-274X.2006.03.040
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (472) PDF downloads(759) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return