ZHOU Xing-lin, LIU Wan-kang, XIAO Wang-xin, RAN Mao-ping, HUANG Xiao-ming. Influence of asphalt mixture volume indexes on asphalt pavement skid resistance performance[J]. Journal of Traffic and Transportation Engineering, 2017, 17(6): 1-9.
Citation: ZHOU Xing-lin, LIU Wan-kang, XIAO Wang-xin, RAN Mao-ping, HUANG Xiao-ming. Influence of asphalt mixture volume indexes on asphalt pavement skid resistance performance[J]. Journal of Traffic and Transportation Engineering, 2017, 17(6): 1-9.

Influence of asphalt mixture volume indexes on asphalt pavement skid resistance performance

More Information
  • Author Bio:

    ZHOU Xing-lin(1965-), male, professor, PhD, zxl65@163.com

  • Corresponding author: XIAO Wang- xin(1975-), male, professor, PhD, 408948368@qq.com
  • Received Date: 2017-07-25
  • Publish Date: 2017-12-25
  • To study the relevance between asphalt pavement skid resistance performance and asphalt mixture volume indexes, and reveal the influence degrees of different volume indexes on the skid resistance performance, the density experiments of different AC-16 asphalt mixtures were conducted by vacuum method and plastic encapsulation method, and the volume indexes such as volumetric voidage (VV), void in mineral aggregate (VMA), void filled with asphalt (VFA) and void in coarse aggregate (VCA) were compared.Indoor polishing test and pendulum test on asphalt mixtures were conducted, asymptotic model was used to fit the skid resistance's decay trend, and the parameters such as the initial value, steady value and damping value of skid resistance were obtained.The function relationships between the volume indexes and the skid resistance performance were built, and the grey correlation degree ranks between the differentvolume indexes and the skid resistance performance were analyzed by grey correlation theory.Research result indicates that there are some differences between the influences of different volume indexes on the skid resistance performance.The skid resistance performance of asphalt mixture increases with the increase of VV and VMA, and the decrease of VFA and VCA.Grey correlation degree descending order is VV, VMA, VFA and VCA, which means that VV is the main influence factor of skid resistance performance, the influence of VMA on skid resistance performance is significant, however, the influence degrees of VFA and VCA are not obvious.In the design and construction process, the asphalt pavement skid resistance performance can be improved by controlling mixture voidage and adjusting the dense state and compact condition of mixture.

     

  • loading
  • [1]
    JIANG Xiao-xia, QIN Run-pu, GAO Wen-yang, et al. Gradation fractal characteristic and mechanical indexes of super large stone mixture[J]. Journal of Traffic and Transportation Engineering, 2013, 13 (1): 7-14. (in Chinese). doi: 10.3969/j.issn.1671-1637.2013.01.002
    [2]
    CARO S, DIAZ A, ROJAS D, et al. A micromechanical model to evaluate the impact of air void content and connectivity in the oxidation of asphalt mixtures[J]. Construction and Building Materials, 2014, 61: 181-190. doi: 10.1016/j.conbuildmat.2014.03.013
    [3]
    LEE J S, GIBSON N, KIM Y R. Use of mechanistic models to investigate fatigue performance of asphalt mixtures: effects of asphalt mix design targets and compaction[J]. Transportation Research Record, 2015 (2507): 108-119.
    [4]
    KUNA K, AIREY G, THOM N. Mix design considerations of foamed bitumen mixtures with reclaimed asphalt pavement material[J]. International Journal of Pavement Engineering, 2017, 18 (10): 902-915. doi: 10.1080/10298436.2015.1126271
    [5]
    YIN Ji-ming, WANG Sheng-yue. Improving the performance of asphalt mixture by addition of short-thin wheat straw pieces[J]. International Journal of Pavement Engineering, 2016, 17 (6): 528-541. doi: 10.1080/10298436.2015.1007228
    [6]
    ZHANG Dong, HUANG Xiao-ming, ZHAO Yong-li, et al. Rubberized asphalt mixture design using a theoretical model[J]. Construction and Building Materials, 2014, 67: 265-269. doi: 10.1016/j.conbuildmat.2014.01.011
    [7]
    DANIEL J S, LACHANCE A. Mechanistic and volumetric properties of asphalt mixtures with recycled asphalt pavement[J]. Transportation Research Record, 2005 (1929): 28-36.
    [8]
    LIU Shu-tang, CAO Wei-dong, REN Xiao-gang, et al. Analysis of key issues about gradation design in superpave system and VMA curve prediction[J]. China Journal of Highway and Transport, 2015, 28 (2): 8-13, 25. (in Chinese). doi: 10.3969/j.issn.1001-7372.2015.02.002
    [9]
    CUI Xin-zhuang, ZHOU Xing-lin, LOU Jun-jie, et al. Measurement method of asphalt pavement mean texture depth based on multi-line laser and binocular vision[J]. International Journal of Pavement Engineering, 2017, 18 (5): 459-471. doi: 10.1080/10298436.2015.1095898
    [10]
    PENG Yong, SUN Li-jun. Effects of air void content on asphalt mixture performance[J]. Journal of Wuhan University of Technology: Transportation Science and Engineering, 2009, 33 (5): 826-829. (in Chinese). doi: 10.3963/j.issn.1006-2823.2009.05.004
    [11]
    YANG Rui-hua, XU Zhi-hong. Relationship between fractal dimension and road performance of asphalt mixture[J]. China Civil Engineering Journal, 2007, 40 (3): 98-103, 109. (in Chinese). doi: 10.3321/j.issn:1000-131X.2007.03.017
    [12]
    ZHOU Xing-lin, XIAO Shen-qing, XIAO Wang-xin, et al. Multi-fractal evaluation on roughness of coarse aggregate surface texture[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2017, 45 (2): 29-33. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201702006.htm
    [13]
    HUANG Wei-dong, HUANG Ming, ZHENG Mao, et al. Air void variation of asphalt rubber mixture grade SAC-13[J]. Journal of Tongji University: Natural Science, 2012, 40 (5): 685-690. (in Chinese). doi: 10.3969/j.issn.0253-374x.2012.05.006
    [14]
    TAN Yi-qiu, XING Chao, ZHANG Lei, et al. Effects of homogeneity on asphalt mixture strain field distribution[J]. China Journal of Highway and Transport, 2016, 29 (4): 8-13. (in Chinese). doi: 10.3969/j.issn.1001-7372.2016.04.002
    [15]
    PENG Yong, SUN Li-jun, SHI Yong-jiu, et al. Relationship between homogeneity and indices of asphalt pavement performance[J]. Journal of Tongji University: Natural Science, 2008, 36 (4): 488-492. (in Chinese). doi: 10.3321/j.issn:0253-374X.2008.04.012
    [16]
    QIAN Zhen-dong, LIU Yang, LIU Chang-bo, et al. Design and skid resistance evaluation of skeleton-dense epoxy asphalt mixture for steel bridge deck pavement[J]. Construction and Building Materials, 2016, 114: 851-863. doi: 10.1016/j.conbuildmat.2016.03.210
    [17]
    TONG Shen-jia, XIE Xiang-bing, ZHAO Da-yong. Fractal description of texture distribution and evaluation of skidresistance performance for asphalt pavement[J]. China Journal of Highway and Transport, 2016, 29 (2): 1-7. (in Chinese). doi: 10.3969/j.issn.1001-7372.2016.02.001
    [18]
    MEEGODA J N, GAO Sheng-yan. Evaluation of pavement skid resistance using high speed texture measurement[J]. Journal of Traffic and Transportation Engineering: English Edition, 2015, 2 (6): 382-390. doi: 10.1016/j.jtte.2015.09.001
    [19]
    ZHOU Xing-lin, LIU Wan-kang, RAN Mao-ping, et al. Influence of acid rain in skid resistance of limestone asphalt pavement[J]. Highway, 2016 (8): 26-31. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201608007.htm
    [20]
    DO M T, TANG Zhen-zhong, KANE M, et al, Pavement polishing—development of a dedicated laboratory test and its correlation with road results[J]. Wear, 2007, 263: 36-42. doi: 10.1016/j.wear.2006.12.086
    [21]
    MEI Ting-yi, LIU Bin. Influence on rut by AC model asphalt mixtures'volume specification[C]∥China Highway and Transportation Society. The Fourth Session of National Road Top BBS on Science and Technology Innovation. Beijing: China Highway and Transportation Society, 2008: 114-117. (in Chinese).
    [22]
    HUANG Hui-guang. Analysis of the influence of void fraction on OGFC-13road performance and drainage function[J]. Journal of China and Foreign Highway, 2014, 34 (3): 227-230. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201403059.htm
    [23]
    HUANG Wei-dong, HUANG Ming, ZHENG Mao, et al. Air void variation of asphalt rubber mixture grade SAC-13[J]. Journal of Tongji University: Natural Science, 2012, 40 (5): 685-690. (in Chinese). doi: 10.3969/j.issn.0253-374x.2012.05.006
    [24]
    PENG Yu-hua, HU Jia-yin, HU Shun-feng. Influence of AC-25particle size distribution on gradation segregation[J]. Journal of Traffic and Transportation Engineering, 2014, 14 (5): 1-7, 18. (in Chinese). doi: 10.3969/j.issn.1671-1637.2014.05.001
    [25]
    WANG Deng-feng, JIANG Rong-chao, LU Wen-chao, et al. Optimization of cab suspension parameters of self-dumping trucks using grey relational analysis[J]. The Journal of Grey System, 2016, 28 (2): 76-89.

Catalog

    Article Metrics

    Article views (887) PDF downloads(573) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return