WEI Qing-chao, XIA Jing-hui, ZANG Chuan-zhen, HAO Min, LIANG Qing-huai. Influence of air gap on dynamic response of LIM metro system[J]. Journal of Traffic and Transportation Engineering, 2017, 17(6): 10-18.
Citation: WEI Qing-chao, XIA Jing-hui, ZANG Chuan-zhen, HAO Min, LIANG Qing-huai. Influence of air gap on dynamic response of LIM metro system[J]. Journal of Traffic and Transportation Engineering, 2017, 17(6): 10-18.

Influence of air gap on dynamic response of LIM metro system

More Information
  • Author Bio:

    WEIQing-chao(1957-), male, professor, PhD, qcwei@bjtu.edu.cn

  • Received Date: 2017-07-11
  • Publish Date: 2017-12-25
  • Based on the theory of probability statistics and frequency domain analysis, the measured data of dynamic air gap between linear induction motor (LIM) and reaction plate (RP) during the train's running on Guangzhou Metro Line 4 were analyzed.Based on the vehicle-track vertical and lateral coupling dynamics model, the dynamic effect of vertical electromagnetic force influenced by the air gap on the vehicle and the track structure was studied and compared with the effect of track random irregularities on the dynamics properties of vehicle-track system.Research result shows that 92.2% of air gaps are within the standard range of 9-12 mm.The air gap obeys the normal distribution, the mean is 10.5 mm, and the standard deviation is 1 mm.The heightdifference between the upper surface of RP and the top of track is the determinant factor of peak air gap, so the most unfavorable position of air gap on the line can be determined by static air gap measurement.The frequency domain component of air gap is dominated by the spatial frequencies less than 0.1 m-1, and the frequency peak of 0.2 m-1 is found, which proves that a periodic component of about 5 mis in the air gap.The vertical electromagnetic force has little effect on the acceleration of vehicle.The vertical electromagnetic force can increase the displacement of track structure.When the track irregularity exists at the same time, the track displacement can reach up to 0.8 mm, and the maximum displacement of track slab can reach 1.0 mm.The track irregularity is the main cause of track structure's continuous vibration. The vertical electromagnetic force only results in larger accelerations at the moment beginning to act on the track structure. The maximum acceleration of track structure caused by the vertical electromagnetic force is greater than the maximum acceleration caused by the track irregularity.The coupling influence of track irregularity and vertical electromagnetic force on the track structure acceleration is far greater than single factor influence, the track acceleration can reach2 200 m·s-2, and the track slab acceleration can reach 1 500 m·s-2.The maximum effect of vertical electromagnetic force on the wheel/rail vertical force is less than 9 kN.Therefore, the dynamic and static detection methods can be used to measure the air gap.First, the general location of RP's over limit point is measured by the dynamic detection device on the train, then the artificial precision measurement is carried out.After maintenance, the dynamic detection is used again for air gap's qualification test.The method can quickly and accurately maintain the whole line's RP and reduce the influence of air gap on the track structure's vertical vibration.

     

  • loading
  • [1]
    FORTIN C. Dynamic curving simulation of forced-steering rail vehicles[D]. Kingston: Queen's University, 1984.
    [2]
    王可丽. 直线电机地铁运载系统轨道关键技术的研究[D]. 北京: 北京交通大学, 2005.

    WANG Ke-li. Study of key technology of track drived by liner induction motor[D]. Beijing: Beijing Jiaotong University, 2005. (in Chinese).
    [3]
    魏庆朝, 郑方圆, 冯雅薇, 等. 轨道不平顺对直线电机轮轨系统动力特性影响[J]. 铁道工程学报, 2017 (1): 36-40, 128. doi: 10.3969/j.issn.1006-2106.2017.01.008

    WEI Qing-chao, ZHENG Fang-yuan, FENG Ya-wei, et al. Influence of track irregularity on LIM wheel/rail system dynamic characteristics[J]. Journal of Railway Engineering Society, 2017 (1): 36-40, 128. (in Chinese). doi: 10.3969/j.issn.1006-2106.2017.01.008
    [4]
    冯雅薇, 魏庆朝, 高亮, 等. 直线电机地铁车轨系统动力响应分析[J]. 工程力学, 2006, 23 (12): 159-164, 122. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200612027.htm

    FENG Ya-wei, WEI Qing-chao, GAO Liang, et al. Dynamic analysis on vehicle-track interaction of linear metro system[J]. Engineering Mechanics, 2006, 23 (12): 159-164, 122. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200612027.htm
    [5]
    魏庆朝, 邓亚士, 冯雅薇. 电机悬挂方式对LIM地铁系统动力特性的影响研究[J]. 铁道工程学报, 2007 (11): 59-64. doi: 10.3969/j.issn.1006-2106.2007.11.013

    WEI Qing-chao, DENG Ya-shi, FENG Ya-wei. Study of suspension mode influences on LIM metro system dynamic characters[J]. Journal of Railway Engineering Society, 2007 (11): 59-64. (in Chinese). doi: 10.3969/j.issn.1006-2106.2007.11.013
    [6]
    龙许友, 魏庆朝, 冯雅薇, 等. 轨道不平顺激励下直线电机车辆/轨道动力响应[J]. 交通运输工程学报, 2008, 8 (2): 9-13. doi: 10.3321/j.issn:1671-1637.2008.02.003

    LONG Xu-you, WEI Qing-chao, FENG Ya-wei, et al. Dynamic response of linear metro vehicle/track excited by track irregularity[J]. Journal of Traffic and Transportation Engineering, 2008, 8 (2): 9-13. (in Chinese). doi: 10.3321/j.issn:1671-1637.2008.02.003
    [7]
    赵金顺, 万传风, 张勇, 等. 直线电机轨道交通车线耦合模型的动力响应研究[J]. 铁道学报, 2006, 28 (5): 129-133. doi: 10.3321/j.issn:1001-8360.2006.05.024

    ZHAO Jin-shun, WAN Chuan-feng, ZHANG Yong, et al. Research on dynamic response of coupled model between vehicle and track for LIM track transportation[J]. Journal of the China Railway Society, 2006, 28 (5): 129-133. (in Chinese). doi: 10.3321/j.issn:1001-8360.2006.05.024
    [8]
    郭薇薇, 夏禾. 直线电机列车作用下高架桥的动力响应分析[J]. 中国铁道科学, 2007, 28 (4): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200704013.htm

    GUO Wei-wei, XIA He. Dynamic response analysis of elevated bridge under linear induction motor train[J]. China Railway Science, 2007, 28 (4): 55-60. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200704013.htm
    [9]
    刘彬彬, 曾京, 罗仁, 等. 直线感应电机车辆建模与动力学仿真[J]. 交通运输工程学报, 2009, 9 (5): 37-43, 61. http://transport.chd.edu.cn/article/id/200905007

    LIU Bin-bin, ZENG Jing, LUO Ren, et al. Modeling and dynamics simulation of vehicle with linear induction motor[J]. Journal of Traffic and Transportation Engineering, 2009, 9 (5): 37-43, 61. (in Chinese). http://transport.chd.edu.cn/article/id/200905007
    [10]
    刘彬彬, 罗仁, 曾京, 等. 地铁直线电机车辆曲线通过仿真[J]. 城市轨道交通研究, 2011 (2): 56-61. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201102017.htm

    LIU Bin-bin, LUO Ren, ZENG Jing, et al. Simulation of curve negotiation of linear metro vehicle[J]. Urban Mass Transit, 2011 (2): 56-61. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201102017.htm
    [11]
    熊嘉阳, 曹亚博, 吴磊, 等. 轮轨纵向几何不平顺对直线电机地铁车辆动态行为的影响[J]. 西南交通大学学报, 2015, 50 (6): 1074-1081. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201506014.htm

    XIONG Jia-yang, CAO Ya-bo, WU Lei, et al. Effect of longitudinal geometric irregularities of wheel and rail on dynamic behavior of metro vehicle driven by linear motor[J]. Journal of Southwest Jiaotong University, 2015, 50 (6): 1074-1081. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201506014.htm
    [12]
    宗凌潇, 马卫华, 罗世辉. 直线电机地铁车辆电机的隔振优化分析[J]. 机械工程学报, 2015, 51 (18): 119-125. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201518016.htm

    ZONG Ling-xiao, MA Wei-hua, LUO Shi-hui. Optimization analysis of vibration isolation of linear motor of metro vehicles[J]. Journal of Mechanical Engineering, 2015, 51 (18): 119-125. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201518016.htm
    [13]
    王晨, 罗世辉, 马卫华, 等. 考虑垂向电磁力的直线电机车辆的轮轨匹配关系研究[J]. 铁道机车车辆, 2015, 35 (2): 110-114. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201502029.htm

    WANG Chen, LUO Shi-hui, MA Wei-hua, et al. Study on wheel/rail matching relationship for the linear motor vehicle considering vertical electromagnetic force[J]. Railway Locomotive and Car, 2015, 35 (2): 110-114. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201502029.htm
    [14]
    刘高坤, 张江, 王树森, 等. 直线电机地铁车辆动力学性能仿真研究的新方法[J]. 机车电传动, 2015 (2): 103-106. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201502030.htm

    LIU Gao-kun, ZHANG Jiang, WANG Shu-sen, et al. New method of dynamics performance simulation for metro vehicle with linear motor[J]. Electric Drive for Locomotives, 2015 (2): 103-106. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201502030.htm
    [15]
    刘高坤. 电磁力对直线电机地铁车辆曲线通过性能的影响[J]. 机车电传动, 2016 (5): 85-90. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201605029.htm

    LIU Gao-kun. Influence of electromagnetic force on curve passing dynamic performance of LIM metro vehicle[J]. Electric Drive for Locomotives, 2016 (5): 85-90. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201605029.htm
    [16]
    庄哲, 梁鑫, 林建辉, 等. 轴箱布置方式对地铁直线电机车辆动力学性能的影响[J]. 城市轨道交通研究, 2017 (9): 30-36. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201709006.htm

    ZHUANG Zhe, LIANG Xin, LIN Jian-hui, et al. Influence of axle box arrangement on the dynamic performance of linear motor metro[J]. Urban Mass Transit, 2017 (9): 30-36. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201709006.htm
    [17]
    戴焕云, 王欢, 林俊. 独立旋转车轮直线电机地铁车辆动力学分析[J]. 工程设计学报, 2009, 16 (1): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-GCSJ200901020.htm

    DAI Huan-yun, WANG Huan, LIN Jun. Dynamic analysis of linear motor vehicle with independent rotating wheels[J]. Journal of Engineering Design, 2009, 16 (1): 75-80. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCSJ200901020.htm
    [18]
    冯雅薇. 直线电机地铁车辆/轨道动力相互作用研究[D]. 北京: 北京交通大学, 2006.

    FENG Ya-wei. Study on the dynamic interaction of linear metro vehicle-track system[D]. Beijing: Beijing Jiaotong University, 2006. (in Chinese).
    [19]
    罗仁, 邬平波, 刘彬彬. 地铁车辆直线电机恒隙控制仿真[J]. 交通运输工程学报, 2010, 10 (4): 50-57. http://transport.chd.edu.cn/article/id/201004009

    LUO Ren, WU Ping-bo, LIU Bin-bin. Constant air gap control simulation of linear induction motor of metro vehicle[J]. Journal of Traffic and Transportation Engineering, 2010, 10 (4): 50-57. (in Chinese). http://transport.chd.edu.cn/article/id/201004009
    [20]
    KUO Chen-ming, HUANG Cheng-hao, CHEN Yi-yi. Vibration characteristics of floating slab track[J]. Journal of Sound and Vibration, 2008, 317 (3-5): 1017-1034.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (547) PDF downloads(441) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return