Public bicycle usage modeling based on urban land use
-
摘要: 将公共自行车出行模式划分为前往站点、租车骑行和还车离开3个阶段, 分别研究了城市用地在每个阶段对公共自行车骑行量的影响; 针对第1、3阶段, 采用兴趣点度量公共自行车站点周围的城市用地类型, 通过引入时间满意度函数, 基于多元回归分析, 提出了预测骑行产生量和吸引量的建模方法; 针对第2阶段, 构建了城市用地对公共自行车骑行量的6个影响指标, 包括起始站点骑行产生量、起始站点分布密度、起始站点偏离度、终止站点骑行吸引量、起终站点间距与起终站点用地差异; 对纽约市961 865条以及上海市1 185 816条公共自行车骑行记录进行多元回归分析。分析结果表明: 在保持用地因素数量不变的情况下, 传统方法针对纽约和上海记录数据的决定系数分别为0.581、0.474, 建模方法的决定系数较高, 分别达到了0.738、0.607;针对自行车站点间客流量的建模, 提出的6个指标均对站点间客流量有显著影响, 并且模型的调整决定系数为0.487。可见, 建模方法更加合理地衡量了城市用地对公共自行车骑行量的影响, 并对站点的骑行产生量、站点间客流量与站点吸引量实现了更为准确的建模。Abstract: The public bicycle travel pattern was divided into three phases, namely going to a station, riding after renting, and leaving after returning.The influence of urban land use on public bicycle usage was investigated for each phase.For the first and third phases, the points of interst were used to measure the type of urban land use surrounding public bicycle station.By introducing time satisfaction function, a modeling method of the prediction of public bicycle demand and attraction was proposed based on multiple regression analysis.For the second phase, six influence factors of public bicycle usage related to urban land use were established, including the bicycle demand of origin station, the density of origin station, the remoteness of origin station, the attraction of destination station, the distance between origin and destination station, and the land use difference between origin and destination station.961 865 and 1 185 816 records of public bicycle usage respectively from New York and Shanghai were analyzed by using multipleregression analysis.Analysis result indicates that for the records of New York and Shanghai, the modeling method yields higher determination coefficients (0.738 and 0.607) than the traditional method (0.581 and 0.474) when the number of land use factors is invariable.All of six proposed factors have significant influence on the traffic volumes between the stations in bicycle traffic volume model, and the adjusted determination coefficient is 0.487.In conclusion, the modeling method can measure the influence of urban land use on the public bicycle usage more feasibly, and it provides a more accurate model of trip demand at stations, traffic volume between stations, and attraction of stations for public bicycle trips.
-
表 1 不同时间满意度函数分析结果对比
Table 1. Comparison of analysis results of different time satisfaction functions
表 2 不同L和U取值分析结果对比
Table 2. Comparison of analysis results with different values of L and U
表 3 不同方法分析结果对比
Table 3. Comparison of analysis results of different methods
表 4 纽约用地因素回归分析结果
Table 4. Regression analysis result of land use factors of New York
表 5 站点间客流量计算结果
Table 5. Calculation result of traffic volume between stations
-
[1] 赵建有, 高谋荣. 中国自行车交通与城市交通可持续发展[J]. 长安大学学报: 自然科学版, 2007, 27 (4): 70-74. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200704015.htmZHAO Jian-you, GAO Mou-rong. Bicycle traffic and sustainable development of urban traffic in China[J]. Journal of Chang'an Univerisity: Natural Science Edition, 2007, 27 (4): 70-74. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200704015.htm [2] KRYKEWYCZ G R, PUCHALSKY C M, ROCKS J, et al. Defining aprimary market and estimating demand for major bicycle-sharing program in Philadelphia, Pennsylvania[J]. Transportation Research Record, 2010 (2143): 117-124. [3] FISHMAN E, WASHINGTON S, HAWORTH N, et al. Bike share: a synthesis of the literature[J]. Transport Reviews, 2013, 33 (2): 148-165. doi: 10.1080/01441647.2013.775612 [4] MAHMOUD M S, El-ASSI W, HABIB K N. Effects of built environment and weather on bike sharing demand: a station level analysis of commercial bike sharing in Toronto[J]. Transportation, 2015, 44 (3): 589-613. [5] BACHAND-MARLEAU J, LEE B H Y, EL-GENEIDY A M. Better understanding of factors influencing likelihood of using shared bicycle systems and frequency of use[J]. Transportation Research Record, 2012 (2314): 66-71. [6] FAGHIH-IMANI A, ELURU N, EL-GENEIDY A M, et al. How land-use and urban form impact bicycle flows: evidence from the bicycle-sharing system (BIXI) in Montreal[J]. Journal of Transport Geography, 2014, 41: 306-314. doi: 10.1016/j.jtrangeo.2014.01.013 [7] WANG Xi-ze, LINDSEY G, SCHONER J E, et al. Modeling bike share station activity: effects of nearby businesses and jobs on trips to and from stations[J]. Journal of Urban Planning and Development, 2016, 142 (1): 1-9. [8] 姚荣涵, 王殿海. 居民出行分布的熵模型及其参数标定[J]. 交通运输工程学报, 2005, 5 (4): 106-110. doi: 10.3321/j.issn:1671-1637.2005.04.022YAO Rong-han, WANG Dian-hai. Entropy models of inhabitant trip distributions and parameters calibration[J]. Journal of Traffic and Transportation Engineering, 2005, 5 (4): 106-110. (in Chinese). doi: 10.3321/j.issn:1671-1637.2005.04.022 [9] CHEN C, CHEN J, BARRY J. Diurnal pattern of transit ridership: a case study of the New York City subway system[J]. Journal of Transport Geography, 2009, 17 (3): 176-186. doi: 10.1016/j.jtrangeo.2008.09.002 [10] XUE A Y, ZHANG R, ZHENG Yu, et al. Destination prediction by sub-trajectory synthesis and privacy protection against such prediction[C]//IEEE. Proceedings of the 2013IEEE International Conference on Data Engineering. New York: IEEE, 2013: 254-265. [11] 丁艺, 陈菡. 重力模型法在居民出行分布预测中的应用[J]. 福建农林大学学报: 自然科学版, 2007, 36 (6): 618-621. doi: 10.3969/j.issn.1671-5470.2007.06.013DING Yi, CHEN Han. Application of gravity model to forecast of resident trips distribution[J]. Journal of Fujian Agriculture and Forestry University: Natural Science Edition, 2007, 36 (6): 618-621. (in Chinese). doi: 10.3969/j.issn.1671-5470.2007.06.013 [12] ZHANG Ying, THOMAS T, BRUSSEL M, et al. Exploring the impact of built environment factors on the use of public bikes at bike stations: case study in Zhongshan, China[J]. Journal of Transport Geography, 2017, 58: 59-70. doi: 10.1016/j.jtrangeo.2016.11.014 [13] SUN Ye-ran, MOBASHERI A, HU Xu-ke, et al. Investigating impacts of environmental factors on the cycling behavior of bicycle-sharing users[J]. Sustainability, 2017, 9 (6): 1-12. [14] FAGHIH-IMANI A, ELURU N. Analysing bicycle-sharing system user destination choice preferences: Chicago's Divvy system[J]. Journal of Transport Geography, 2015, 44: 53-64. doi: 10.1016/j.jtrangeo.2015.03.005 [15] 朱玮, 庞宇琦, 王德, 等. 上海市闵行区公共自行车出行特征研究[J]. 上海城市规划, 2012 (6): 102-107. doi: 10.3969/j.issn.1673-8985.2012.06.022ZHU Wei, PANG Yu-qi, WANG De, et al. Research on the travel characteristics of public bicycle in Minhang District, Shanghai[J]. Shanghai Urban Planning Review, 2012 (6): 102-107. (in Chinese). doi: 10.3969/j.issn.1673-8985.2012.06.022 [16] SCHONER J E, LEVINSON D M. Which station?access trips and bike share route choice[C]//TRB. 93rd Annual Meeting of Transportation Research Board. Washington DC: TRB, 2014: 1-15. [17] BERMAN O, DREZNER Z, KRASS D. Generalized coverage: new developments in covering location models[J]. Computers and Operations Research, 2010, 37 (10): 1675-1687. doi: 10.1016/j.cor.2009.11.003 [18] 周根贵, 沈雁飞. 基于时间满意度的物流配送中心选址问题研究[J]. 浙江工业大学学报, 2008, 36 (4): 355-358. doi: 10.3969/j.issn.1006-4303.2008.04.001ZHOU Gen-gui, SHEN Yan-fei. Research on logistics siting problem in logistic distribution center based on time satisfaction[J]. Journal of Zhejiang University of Technology, 2008, 36 (4): 355-358. (in Chinese). doi: 10.3969/j.issn.1006-4303.2008.04.001 [19] 周爱莲, 李旭宏, 毛海军. 企业物流中心稳健性选址模型[J]. 交通运输工程学报, 2010, 10 (1): 60-65. doi: 10.3969/j.issn.1671-1637.2010.01.011ZHOU Ai-lian, LI Xu-hong, MAO Hai-jun. Robust location model of enterprise logistics center[J]. Journal of Traffic and Transportation Engineering, 2010, 10 (1): 60-65. (in Chinese). doi: 10.3969/j.issn.1671-1637.2010.01.011 [20] 常超凡. 城市居民短距离出行行为研究[D]. 北京: 北京交通大学, 2007.CHANG Chao-fan. Study on short-distance travel behavior of urban resident[D]. Beijing: Beijing Jiaotong University, 2007. (in Chinese). [21] 云美萍, 杨晓光, 李盛. 慢行交通系统规划简述[J]. 城市交通, 2009, 7 (2): 57-59. https://www.cnki.com.cn/Article/CJFDTOTAL-CSJT200902012.htmYUN Mei-ping, YANG Xiao-guang, LI Sheng. A breif review of planning for ped and bike system[J]. Urban Transport of China, 2009, 7 (2): 57-59. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CSJT200902012.htm [22] 王淑伟. 站点周边用地特性对轨道客流影响机理研究[D]. 北京: 北京工业大学, 2015.WANG Shu-wei. Research on the influence mechanism of transit station surrounding land use on transit ridership[D]. Beijing: Beijing University of Technology, 2015. (in Chinese). [23] 马云峰. 网络选址中基于时间满意的覆盖问题研究[D]. 武汉: 华中科技大学, 2005.MA Yun-feng. Time-satisfaction-based covering location problems on network[D]. Wuhan: Huazhong University of Science and Technology, 2005. (in Chinese). [24] FARAHANI R Z, ASGARI N, HEIDARI N, et al. Covering problems in facility location: a review[J]. Computers and Industrial Engineering, 2012, 62 (1): 368-407. [25] LEE J M, LEE Y H. Tabu based heuristics for the generalized hierarchical covering location problem[J]. Computers and Industrial Engineering, 2010, 58 (4): 638-645. doi: 10.1016/j.cie.2010.01.005 -