Review on structural vibration damage identification technology for railway vehicles
-
摘要: 从智能运维的角度阐述了利用结构振动损伤识别技术进行轨道车辆结构健康监测的重要性和必要性;根据不同损伤识别的适用范围,将结构振动损伤识别技术分为基于模型的方法和基于响应信号的方法;结合结构健康监测中损伤识别的不同层次,分析了以结构损伤的存在性、类型、定位和程度表征的不同识别方法;概括了轨道车辆运维过程中损伤识别技术的典型特征,讨论了基于模型的损伤识别中固有频率、模态形状、曲率模态等与模态参数有关方法的优缺点;分析了基于响应信号方法的应用现状和发展趋势,并阐述了模型修正和优化技术在结构损伤识别中的应用;重点分析了车辆关键部件故障诊断与监测中损伤识别技术的实施,讨论了结构振动损伤识别技术在未来轨道车辆智能运维策略中的主要发展方向,展望了未来轨道车辆部件的状态检修策略和智能运维技术。研究结果表明:轨道车辆的智能运维应该充分考虑结构振动损伤识别技术与人工智能等新技术的结合;大数据驱动的结构振动损伤识别技术能够更好解决车辆状态实时监测的技术难点;考虑复杂环境因素对轨道车辆结构部件损伤识别技术的影响,需要不断完善基于耦合振动效应的结构振动损伤识别技术及方法。Abstract: The importance and necessity of using the structural vibration damage identification technology for monitoring the structural health of railway vehicles were described in the context of intelligent operation and maintenance. According to the application ranges of different damage identifications, the structural vibration damage identification technology was classified into the model-based and response signal-based methods. Different methods characterized by the existence, type, location, and severity of structural damage were analyzed based on different damage identification hierarchies in structural health monitoring. Typical characteristics of damage identification technology during the operation and maintenance of railway vehicles were briefly outlined. In addition, the strength and weakness of model-based damage identification with respect to its modal parameters such as the natural frequency, modal shape, and curvature mode shape were evaluated. The application states and development trends of response signal-based methods were analyzed, and the applications of model modification and optimization technology in the structural damage identification were also described. A detailed analysis was focused on the implementation of damage identification technology in the fault diagnosis and monitoring of vehicle key components, and the most prominent trend of structural vibration damage identification technology in the intelligent operation and maintenance of future railway vehicles was discussed. The state maintenance strategy and intelligent operation and maintenance technology for railway vehicle components were also prospected. Research result shows that the fusion of structural vibration damage identification technology with new methods, such as the artificial intelligence, should be thoroughly considered in the intelligent operation and maintenance of railway vehicles. The big data-driven structural vibration damage identification technology can better solve the technical difficulty in the real-time state monitoring of railway vehicles. It is necessary to further refine the structural vibration damage identification technology and method based on the coupled vibrational modes, owing to the effect of complex environmental factor on the damage identification technology for the railway vehicle structural components. 1 tab, 4 figs, 130 refs.
-
表 1 车辆关键结构部件的损伤分类
Table 1. Damage classification of key structural components of vehicles
部件 损伤特征 车轮 磨损、扁疤、踏面擦伤、滚动接触疲劳、裂纹、塑性变形等 轴承 疲劳剥落、磨损、腐蚀、局部硬化、剥离、胶合、保持架损伤等 齿轮 齿断裂、齿面疲劳、齿面磨损、齿面划痕、塑性变形、化学腐蚀等 车轴 裂纹、腐蚀、断裂等 轴箱 裂纹、腐蚀、断裂等 车体 裂纹、腐蚀、断裂等 构架 裂纹、腐蚀、断裂等 -
[1] SINOU J J. A review of damage detection and health monitoring of mechanical systems from changes in the measurement of linear and non-linear vibrations[M]//VERICHEVN N, VERICHEVS N. Mechanical Vibrations: Measurement, Effects and Control. New York: Nova Science Publishers, 2009: 643-702. [2] CARDEN E P, FANNING P. Vibration based condition monitoring: a review[J]. Structural Health Monitoring, 2004, 3(4): 355-377. doi: 10.1177/1475921704047500 [3] FARRAR C R, WORDEN K. An introduction to structural health monitoring[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 365(1851): 303-315. doi: 10.1098/rsta.2006.1928 [4] DAS S, SAHA P, PATRO S K. Vibration-based damage detection techniques used for health monitoring of structures: a review[J]. Journal of Civil Structural Health Monitoring, 2016, 6(3): 477-507. doi: 10.1007/s13349-016-0168-5 [5] CAWLEY P R, ADAMS D. The location of defects in structures from measurements of natural frequencies[J]. Journal of Strain Analysis for Engineering Design, 1979, 14(2): 49-57. doi: 10.1243/03093247V142049 [6] RYTTER A. Vibration based inspection of civil engineering structures[D]. Aalborg: Aalborg University, 1993. [7] DOEBLING S W, FARRAR C R, PRIME M B, et al. Damage identification and health monitoring of structural and mechanical systems from change in their vibration characteristics: a literature review[J]. The Shock and Vibration Digest, 1996, 30(11): 2043-2049. http://digital.library.unt.edu/ark:/67531/metadc663932/ [8] FAN Wei, QIAO Pi-zhong. Vibration-based damage identification methods: a review and comparative study[J]. Structural Health Monitoring, 2011, 10(1): 83-111. doi: 10.1177/1475921710365419 [9] JASSIM Z A, ALI N, MUSTAPHA F, et al. A review on the vibration analysis for a damage occurrence of a cantilever beam[J]. Engineering Failure Analysis, 2013, 31: 442-461. doi: 10.1016/j.engfailanal.2013.02.016 [10] KONG Xuan, CAI Chun-sheng, HU Jie-xuan. The state-of-the-art on framework of vibration-based structural damage identification for decision making[J]. Applied Sciences, 2017, 7(5): 497. doi: 10.3390/app7050497 [11] BURGOS D A T, VARGAS R C G, PEDRAZA C, et al. Damage identification in structural health monitoring: a brief review from its implementation to the use of data-driven applications[J]. Sensors, 2020, 20(3): 733. doi: 10.3390/s20030733 [12] ONUR A, OSAMA A, SERKAN K, et al. A review of vibration-based damage detection in civil structures: from traditional methods to machine learning and deep learning applications[J]. Mechanical Systems and Signal Processing, 2021, 147: 107077. doi: 10.1016/j.ymssp.2020.107077 [13] YOKOYAMA A. Innovative changes for maintenance of railway by using ICT—to achieve "smart maintenance"[J]. Procedia CIRP, 2015, 38: 24-29. doi: 10.1016/j.procir.2015.07.074 [14] WANG Shu-qing, XU Ming-qiang. Modal strain energy-based structural damage identification: a review and comparative study[J]. Structural Engineering International, 2019: 29(2): 234-248. doi: 10.1080/10168664.2018.1507607 [15] GOMES G F, DIAZ MENDEZ Y A, LOPES ALEXANDRINO P D S, et al. A review of vibration based inverse methods for damage detection and identification in mechanical structures using optimization algorithms and ANN[J]. Archives of Computational Methods in Engineering, 2019, 26(4): 883-897. doi: 10.1007/s11831-018-9273-4 [16] LEE Y S, CHUNG M J. A study on crack detection using eigen frequency test data[J]. Computers and Structures, 2000, 77(3): 327-342. doi: 10.1016/S0045-7949(99)00194-7 [17] PAN Jing-wen, ZHANG Zhi-fang, WU Jiu-rong, et al. A novel method of vibration modes selection for improving accuracy of frequency-based damage detection[J]. Composites Part B: Engineering, 2019, 159: 437-446. doi: 10.1016/j.compositesb.2018.08.134 [18] DAHAK M, TOUAT N, KHAROUBI M. Damage detection in beam through change in measured frequency and undamaged curvature mode shape[J]. Inverse Problems in Science and Engineering, 2019, 27(1): 89-114. doi: 10.1080/17415977.2018.1442834 [19] SHI Bin-kai, QIAO Pi-zhong. A new surface fractal dimension for displacement mode shape-based damage identification of plate-type structures[J]. Mechanical Systems and Signal Processing, 2018, 103: 139-161. doi: 10.1016/j.ymssp.2017.09.033 [20] ZHAO Ying, NOORI M, ALTABEY W A, et al. Mode shape- based damage identification for a reinforced concrete beam using wavelet coefficient differences and multiresolution analysis[J]. Structural Control and Health Monitoring, 2018, 25(1): e2041. doi: 10.1002/stc.2041 [21] XU Y F, ZHU W D, LIU J, et al. Identification of embedded horizontal cracks in beams using measured mode shapes[J]. Journal of Sound and Vibration, 2014, 333(23): 6273-6294. doi: 10.1016/j.jsv.2014.04.046 [22] JANELIUKSTIS R, RUCEVSKIS S, WESOLOWSKI M, et al. Experimental structural damage localization in beam structure using spatial continuous wavelet transform and mode shape curvature methods[J]. Measurement, 2017, 102: 253-270. doi: 10.1016/j.measurement.2017.02.005 [23] NAVABIAN N, BOZORGNASAB M, TAGHIPOUR R, et al. Damage identification in plate-like structure using mode shape derivatives[J]. Archive of Applied Mechanics, 2016, 86(5): 819-830. doi: 10.1007/s00419-015-1064-x [24] RUCEVSKIS S, JANELIUKSTIS R, AKISHIN P, et al. Mode shape-based damage detection in plate structure without baseline data[J]. Structural Control and Health Monitoring, 2016, 23(9): 1180-1193. doi: 10.1002/stc.1838 [25] YANG Hui-chao, XU Fei-yun, MA Jia-xin, et al. Strain modal-based damage identification method and its application to crane girder without original model[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(4): 1299-1311. doi: 10.1177/0954406218769924 [26] 周计祥, 吴邵庆, 董萼良, 等. 基于应变模态的模态应变能损伤识别方法[J]. 振动测试与诊断, 2019, 39(1): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201901005.htmZHOU Ji-xiang, WU Shao-qing, DONG E-liang, et al. Damage identification based on modal strain energy formulated by strain models[J]. Journal of Vibration, Measurement and Diagnosis, 2019, 39(1): 25-31. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201901005.htm [27] AHMAD S, WALEED A, VIRK U S, et al. Multiple damage detections in plate-like structures using curvature mode shapes and gapped smoothing method[J]. Advances in Mechanical Engineering, 2019, 11(5): 1687814019848921. http://www.researchgate.net/publication/332917879_Multiple_damage_detections_in_plate-like_structures_using_curvature_mode_shapes_and_gapped_smoothing_method/download [28] ZHONG Hai, YANG Mi-jia. Damage detection for plate-like structures using generalized curvature mode shape method[J]. Journal of Civil Structural Health Monitoring, 2016, 6(1): 141-152. doi: 10.1007/s13349-015-0148-1 [29] BAGHERKHANI A, BAGHLANI A. Enhancing the curvature mode shape method for structural damage severity estimation by means of the distributed genetic algorithm[J]. Engineering Optimization, 2021, 53(4): 683-701. doi: 10.1080/0305215X.2020.1746294 [30] 吴多, 刘来君, 张筱雨, 等. 基于曲率模态曲线变化的桥梁损伤识别[J]. 建筑科学与工程学报, 2018, 35(2): 119-126. doi: 10.3969/j.issn.1673-2049.2018.02.017WU Duo, LIU Lai-jun, ZHANG Xiao-yu, et al. Bridge damage identification based on curvature mode curve[J]. Journal of Architecture and Civil Engineering, 2018, 35(2): 119-126. (in Chinese) doi: 10.3969/j.issn.1673-2049.2018.02.017 [31] XU Y F, ZHU W D, SMITH S A. Non-model-based damage identification of plates using principal, mean and Gaussian curvature mode shapes[J]. Journal of Sound and Vibration, 2017, 400: 626-659. doi: 10.1016/j.jsv.2017.03.030 [32] DANIELE D, GABRIELE C. Damage identification techniques via modal curvature analysis: overview and comparison[J]. Mechanical Systems and Signal Processing, 2015, 52: 181-205. http://www.sciencedirect.com/science/article/pii/S0888327014002076 [33] SEYEDPOOR S M. A two stage method for structural damage detection using a modal strain energy based index and particle swarm optimization[J]. International Journal of Non-Linear Mechanics, 2012, 47(1): 1-8. doi: 10.1016/j.ijnonlinmec.2011.07.011 [34] LALE AREFI S, GHOLIZAD A, SEYEDPOOR S M. Damage detection of structures using modal strain energy with Guyan reduction method[J]. Journal of Rehabilitation in Civil Engineering, 2020, 8(4): 47-60. http://www.researchgate.net/publication/350609584_Damage_Detection_of_Structures_Using_Modal_Strain_Energy_with_Guyan_Reduction_Method [35] VO-DUY T, HO-HUU V, DANG-TRUNG H, et al. A two- step approach for damage detection in laminated composite structures using modal strain energy method and an improved differential evolution algorithm[J]. Composite Structures, 2016, 147: 42-53. doi: 10.1016/j.compstruct.2016.03.027 [36] VO-DUY T, HO-HUU V, DANG-TRUNG H, et al. Damage detection in laminated composite plates using modal strain energy and improved differential evolution algorithm[J]. Procedia Engineering, 2016, 142: 181-188. http://www.sciencedirect.com/science/article/pii/S1877705816003945 [37] 刘文光, 颜龙, 郭隆清. 基于模态应变能法的弹性薄板损伤识别[J]. 噪声与振动控制, 2016, 36(3): 164-168. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201603035.htmLIU Wen-guang, YAN Long, GUO Long-qing. Damage identification of elastic thin plates by modal strain[J]. Noise and Vibration Control, 2016, 36(3): 164-168. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201603035.htm [38] 梁振彬. 基于模态应变能的结构损伤识别方法研究[D]. 北京: 清华大学, 2017.LIANG Zhen-bin. Study on damage detection of structures based on modal strain energy[D]. Beijing: Tsinghua University, 2017. (in Chinese). [39] 卫军, 杜永潇, 吴志强, 等. 基于模态应变能和Bayes理论的梁结构损伤识别[J]. 铁道科学与工程学报, 2019, 16(8): 2052-2061. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201908023.htmWEI Jun, DU Yong-xiao, WU Zhi-qiang, et al. Damage identification of beam structures based on modal strain energy and Bayesian data fusion theory[J]. Journal of Railway Science and Engineering, 2019, 16(8): 2052-2061. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201908023.htm [40] FU Y Z, LIU J K, WEI Z T, et al. A two-step approach for damage identification in plates[J]. Journal of Vibration and Control, 2016, 22(13): 3018-3031. doi: 10.1177/1077546314557689 [41] WEI Z T, LIU J K, LU Z R. Damage identification in plates based on the ratio of modal strain energy change and sensitivity analysis[J]. Inverse Problems in Science and Engineering, 2016, 24(2): 265-283. doi: 10.1080/17415977.2015.1017489 [42] SHA Gang-gang, RADZIENSKI M, SOMAN R, et al. Multiple damage detection in laminated composite beams by data fusion of Teager energy operator-wavelet transform mode shapes[J]. Composite Structures, 2020, 235: 111798. doi: 10.1016/j.compstruct.2019.111798 [43] MARDASI A G, WU N, WU C. Experimental study on the crack detection with optimized spatial wavelet analysis and windowing[J]. Mechanical Systems and Signal Processing, 2018, 104: 619-630. doi: 10.1016/j.ymssp.2017.11.039 [44] SERRA R, LOPEZ L. Damage detection methodology on beam- like structures based on combined modal wavelet transform strategy[J]. Mechanics and Industry, 2017, 18(8): 807. doi: 10.1051/meca/2018007 [45] YANG Chen, OYADIJI S O. Damage detection using modal frequency curve and squared residual wavelet coefficients-based damage indicator[J]. Mechanical Systems and Signal Processing, 2017, 83: 385-405. doi: 10.1016/j.ymssp.2016.06.021 [46] JANELIUKSTIS R, RUCEVSKIS S, WESOLOWSKI M, et al. Multiple damage identification in beam structure based on wavelet transform[J]. Procedia Engineering, 2017, 172: 426-432. doi: 10.1016/j.proeng.2017.02.023 [47] KATUNIN A. Vibration-based spatial damage identification in honeycomb-core sandwich composite structures using wavelet analysis[J]. Composite Structures, 2014, 118: 385-391. doi: 10.1016/j.compstruct.2014.08.010 [48] KATUNIN A. Damage identification based on stationary wavelet transform of modal data[J]. Modelowanie , 2014, 20: 35-41. http://www.researchgate.net/publication/266478005_Damage_identification_based_on_stationary_wavelet_transform_of_modal_data/download[49] ZHANG X, CHEN R, ZHOU Q. Damage identification using wavelet packet transform and neural network ensembles[J]. International Journal of Structural Stability and Dynamics, 2018, 18(12): 1850148. doi: 10.1142/S0219455418501481 [50] ZHANG Xing-wu, GAO R X, YAN Ru-qiang, et al. Multivariable wavelet finite element-based vibration model for quantitative crack identification by using particle swarm optimization[J]. Journal of Sound and Vibration, 2016, 375: 200-216. doi: 10.1016/j.jsv.2016.04.018 [51] 缪炳荣, 杨树旺, 王名月, 等. 利用振动响应的多种结构损伤识别方法比较[J]. 振动工程学报, 2020, 33(4): 724-733. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC202004010.htmMIAO Bing-rong, YANG Shu-wang, WANG Ming-yue, et al. Comparison of various structural damage identification methods using vibration response[J]. Journal of Vibration Engineering, 2020, 33(4): 724-733. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC202004010.htm [52] 李旭娟, 缪炳荣, 史艳民, 等. 基于小波方法的板结构损伤识别研究[J]. 机械强度, 2018, 40(1): 177-182. https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201801030.htmLI Xu-juan, MIAO Bing-rong, SHI Yan-min, et al. Damage identification study of plate structures based on wavelet method[J]. Journal of Mechanical Strength, 2018, 40(1): 177-182. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201801030.htm [53] 王名月, 缪炳荣, 李旭娟, 等. 基于转角模态和小波神经网络的连续梁损伤识别研究[J]. 力学季刊, 2016, 37(4): 684-691. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201604008.htmWANG Ming-yue, MIAO Bing-rong, LI Xu-juan, et al. Damage identification of continuous beam based on rotation mode and wavelet neural network[J]. Chinese Quarterly of Mechanics, 2016, 37(4): 684-691. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201604008.htm [54] 杨树旺. 基于振动响应与优化技术的结构损伤识别研究[D]. 成都: 西南交通大学, 2020.YANG Shu-wang. Research on structural damage identification based on vibration and optimization technology[D]. Chengdu: Southwest Jiaotong University, 2020. (in Chinese). [55] WEI Zi-tian, LIU Ji-ke, LU Zhong-rong. Structural damage detection using improved particle swarm optimization[J]. Inverse Problems in Science and Engineering, 2018, 26(6): 792-810. doi: 10.1080/17415977.2017.1347168 [56] KHATIR S, BELAIDI I, KHATIR T, et al. Multiple damage detection in unidirectional graphite-epoxy composite beams using particle swarm optimization and genetic algorithm[J]. Mechanika, 2017, 23(4): 514-521. http://www.researchgate.net/publication/319531835_Multiple_damage_detection_in_unidirectional_graphite-epoxy_composite_beams_using_particle_swarm_optimization_and_genetic_algorithm [57] KHATIR S, WAHAB M A, BOUTCHICHA D, et al. Structural health monitoring using modal strain energy damage indicator coupled with teaching-learning-based optimization algorithm and isogoemetric analysis[J]. Journal of Sound and Vibration, 2019, 448: 230-246. doi: 10.1016/j.jsv.2019.02.017 [58] SEYEDPOOR S M, AHMADI A, PAHNABI N. Structural damage detection using time domain responses and an optimization method[J]. Inverse Problems in Science and Engineering, 2019, 27(5): 669-688. doi: 10.1080/17415977.2018.1505884 [59] DING Z H, HUANG M, LU Z R. Structural damage detection using artificial bee colony algorithm with hybrid search strategy[J]. Swarm and Evolutionary Computation, 2016, 28: 1-13. doi: 10.1016/j.swevo.2015.10.010 [60] ZHANG Chao-dong, XU You-lin. Multi-level damage identification with response reconstruction[J]. Mechanical Systems and Signal Processing, 2017, 95: 42-57. doi: 10.1016/j.ymssp.2017.03.029 [61] GENG Xiang-yi, LU Shi-zeng, JIANG Ming-shun, et al. Research on FBG-based CFRP structural damage identification using BP neural network[J]. Photonic Sensors, 2018, 8(2): 168-175. doi: 10.1007/s13320-018-0466-0 [62] ASHORY M R, GHASEMI-GHALEBAHMAN A, KOKABI M J. An efficient modal strain energy-based damage detection for laminated composite plates[J]. Advanced Composite Materials, 2018, 27(2): 147-162. doi: 10.1080/09243046.2017.1301069 [63] GHASEMI M R, NOBAHARI M, SHABAKHTY N. Enhanced optimization-based structural damage detection method using modal strain energy and modal frequencies[J]. Engineering with Computers, 2018, 34(3): 637-647. doi: 10.1007/s00366-017-0563-5 [64] LOPES ALEXANDRINO P S L, GOMES G F, CUNHA JR S S. A robust optimization for damage detection using multiobjective genetic algorithm, neural network and fuzzy decision making[J]. Inverse Problems in Science and Engineering, 2020, 28(1): 21-46. doi: 10.1080/17415977.2019.1583225 [65] KHATIR S, BELAIDI I, KHATIR T, et al. Multiple damage detection in composite beams using particle swarm optimization and genetic algorithm[J]. Mechanics, 2017, 23(4): 514-521. http://www.researchgate.net/publication/319531835_Multiple_damage_detection_in_unidirectional_graphite-epoxy_composite_beams_using_particle_swarm_optimization_and_genetic_algorithm [66] HOU Rong-rong, XIA Yong, XIA Qi, et al. Genetic algorithm based optimal sensor placement for L1-regularized damage detection[J]. Structural Control and Health Monitoring, 2019, 26(1): e2274. doi: 10.1002/stc.2274 [67] SEYEDPOOR S M, NOPOUR M H. A two-step method for damage identification in moment frame connections using support vector machine and differential evolution algorithm[J]. Applied Soft Computing, 2020, 88: 106008. doi: 10.1016/j.asoc.2019.106008 [68] GUEDRIA N B. An accelerated differential evolution algorithm with new operators for multi-damage detection in plate-like structures[J]. Applied Mathematical Modelling, 2020, 80: 366-383. doi: 10.1016/j.apm.2019.11.023 [69] DU D C, VINH H, TRUNG V D, et al. Efficiency of Jaya algorithm for solving the optimization-based structural damage identification problem based on a hybrid objective function[J]. Engineering Optimization, 2018, 50(8): 1233-1251. doi: 10.1080/0305215X.2017.1367392 [70] XU H J, LIU J K, LU Z R. Structural damage identification based on cuckoo search algorithm[J]. Advances in Structural Engineering, 2016, 19(5): 849-859. doi: 10.1177/1369433216630128 [71] MISHRA M, BARMAN S K, MAITY D, et al. Ant lion optimisation algorithm for structural damage detection using vibration data[J]. Journal of Civil Structural Health Monitoring, 2019, 9(1): 117-136. doi: 10.1007/s13349-018-0318-z [72] CHEN Ze-peng, YU Ling. A new structural damage detection strategy of hybrid PSO with Monte Carlo simulations and experimental verifications[J]. Measurement, 2018, 122: 658-669. doi: 10.1016/j.measurement.2018.01.068 [73] AN Yong-hui, CHATZI E, SIM Sung-han, et al. Recent progress and future trends on damage identification methods for bridge structures[J]. Structural Control and Health Monitoring, 2019, 26(10): e2416. doi: 10.1002/stc.2416 [74] XING Shu-tao. Structural identification and damage identification using output-only vibration measurements[D]. Logan: Utah State University, 2011. [75] ABDELJABER O, AVCI O, KIRANYAZ S, et al. Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks[J]. Journal of Sound and Vibration, 2017, 388: 154-170. doi: 10.1016/j.jsv.2016.10.043 [76] TENG Z, TENG S, ZHANG J, et al. Structural damage detection based on real-time vibration signal and convolutional neural network[J]. Applied Sciences, 2020, 10(14): 4720. doi: 10.3390/app10144720 [77] AZAMI M, SALEHI M. Response-based multiple structural damage localization through multi-channel empirical mode decomposition[J]. Journal of Structural Integrity and Maintenance, 2019, 4(4): 195-206. doi: 10.1080/24705314.2019.1657616 [78] YE X W, JIN T, YUN C B. A review on deep learning-based structural health monitoring of civil infrastructures[J]. Smart Structures and Systems, 2019, 24(5): 567-585. [79] WANG Jia-lai, QIAO Pi-zhong. Improved damage detection for beam-type structures using a uniform load surface[J]. Structural Health Monitoring, 2007, 6(2): 99-110. doi: 10.1177/1475921706072062 [80] BANDARA R P, CHAN T H T, THAMBIRATNAM D P. Structural damage detection method using frequency response functions[J]. Structural Health Monitoring, 2014, 13(4): 418-429. doi: 10.1177/1475921714522847 [81] COMANDUCCI G, MAGALHÃES F, UBERTINI F, et al. On vibration-based damage detection by multivariate statistical techniques: application to a long-span arch bridge[J]. Structural Health Monitoring, 2016, 15(5): 505-524. doi: 10.1177/1475921716650630 [82] GHADIMI S, KOUREHLI S S. Multiple crack identification in Euler beams using extreme learning machine[J]. KSCE Journal of Civil Engineering, 2017, 21(1): 389-396. doi: 10.1007/s12205-016-1078-0 [83] GRES S, ULRIKSEN M D, DÖHLER M, et al. Statistical methods for damage detection applied to civil structures[J]. Procedia Engineering, 2017, 199: 1919-1924. doi: 10.1016/j.proeng.2017.09.280 [84] HUANG N E, SHEN S S P. Hilbert-Huang Transform and its Applications[M]. Singapore: World Scientific, 2014. [85] WORDEN K, MANSON G. The application of machine learning to structural health monitoring[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 365(1851): 515-537. doi: 10.1098/rsta.2006.1938 [86] GUI Guo-qing, PAN Hong, LIN Zhi-bin, et al. Data-driven support vector machine with optimization techniques for structural health monitoring and damage detection[J]. KSCE Journal of Civil Engineering, 2017, 21(2): 523-534. doi: 10.1007/s12205-017-1518-5 [87] PAN Hong, AZIMI M, LIN Zhi-bin, et al. Time-frequency-based data-driven structural diagnosis and damage detection for cable-stayed bridges[J]. Journal of Bridge Engineering, 2018, 23(6): 04018033. doi: 10.1061/(ASCE)BE.1943-5592.0001199 [88] SALEHI H, BISWAS S, BURGUEÑO R. Data interpretation framework integrating machine learning and pattern recognition for self-powered data-driven damage identification with harvested energy variations[J]. Engineering Applications of Artificial Intelligence, 2019, 86: 136-153. doi: 10.1016/j.engappai.2019.08.004 [89] VITOLA J, VEJAR M A, BURGOS D A T, et al. Data-driven methodologies for structural damage detection based on machine learning applications[M]//RAMAKRISHNAN S. Pattern Recognition Analysis and Applications. London: INTECH Open Science, 2016: 109-126. [90] NGIGI R W, PISLARU C, BALL A, et al. Modern techniques for condition monitoring of railway vehicle dynamics[J]. Journal of Physics, 2012, 364(1): 012016. http://www.ingentaconnect.com/content/iop/jpcs/2012/00000364/00000001/art012016 [91] TAKIKAWA M. Innovation in railway maintenance utilizing information and communication technology (smart maintenance initiative)[J]. Japan Railway and Transport Review, 2016(67): 22-35. http://trid.trb.org/view/1402702 [92] HUANG Zheng. Integrated railway remote condition monitoring[D]. Birmingham: University of Birmingham, 2017. [93] AZIM M R, GVL M. Damage detection of steel girder railway bridges utilizing operational vibration response[J]. Structural Control and Health Monitoring, 2019, 26(11): e2447. doi: 10.1002/stc.2447 [94] NEVES C. Structural health monitoring of bridges: model-free damage detection method using machine learning[D]. Stockholm: KTH Royal Institute of Technology, 2017. [95] GEORGE R C, POSEY J, GUPTA A, et al. Damage detection in railway bridges under moving train load[J]. Model Validation and Uncertainty Quantification, 2017, 3: 349-354. doi: 10.1007/978-3-319-54858-6_35 [96] ALVES V N, DE OLIVEIRA M M, RIBEIRO D, et al. Model- based damage identification of railway bridges using genetic algorithms[J]. Engineering Failure Analysis, 2020, 118: 104845. doi: 10.1016/j.engfailanal.2020.104845 [97] ZHAN J W, XIA H, CHEN S Y, et al. Structural damage identification for railway bridges based on train-induced bridge responses and sensitivity analysis[J]. Journal of Sound and Vibration, 2011, 330(4): 757-770. doi: 10.1016/j.jsv.2010.08.031 [98] NGAMKHANONG C, KAEWUNRUEN S, COSTA B J A. State-of-the-art review of railway track resilience monitoring[J]. Infrastructures, 2018, 3(1): 3. doi: 10.3390/infrastructures3010003 [99] CHUDZIKIEWICZ A, BOGACZ R, KOSTRZEWSKI M, et al. Condition monitoring of railway track systems by using acceleration signals on wheelset axle-boxes[J]. Transport, 2018, 33(2): 555-566. doi: 10.3846/16484142.2017.1342101 [100] OREGUI M, LI Z, DOLLEVOET R. Identification of characteristic frequencies of damaged railway tracks using field hammer test measurements[J]. Mechanical Systems and Signal Processing, 2015, 54: 224-242. http://smartsearch.nstl.gov.cn/paper_detail.html?id=eb67a6be1236b027655a968706f83269 [101] TAO Gong-quan, WEN Ze-feng, JIN Xue-song, et al. Polygonisation of railway wheels: a critical review[J]. Railway Engineering Science, 2020, 28(3): 1-29. doi: 10.1007/s40534-020-00222-x/figures/23 [102] CANTERO D, BASU B. Railway infrastructure damage detection using wavelet transformed acceleration response of traversing vehicle[J]. Structural Control and Health Monitoring, 2015, 22(1): 62-70. doi: 10.1002/stc.1660 [103] WANG Long-qi, ZHANG Yao, LIE S T. Detection of damaged supports under railway track based on frequency shift[J]. Journal of Sound and Vibration, 2017, 392: 142-153. doi: 10.1016/j.jsv.2016.11.018 [104] BARKE D, CHIU W K. Structural health monitoring in the railway industry: a review[J]. Structural Health Monitoring, 2005, 4(1): 81-93. doi: 10.1177/1475921705049764 [105] CHONG S Y, LEE J R, SHIN H S. A review of health and operation monitoring technologies for trains[J]. Smart Structures and Systems, 2010, 6(9): 1079-1105. doi: 10.12989/sss.2010.6.9.1079 [106] ALEMI A, CORMAN F, LODEWIJKS G. Condition monitoring approaches for the detection of railway wheel defects[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2017, 231(8): 961-981. doi: 10.1177/0954409716656218 [107] ALEMI A. Railway wheel defect identification[D]. Delft: Delft University of Technology, 2019. [108] ALEMI A, CORMAN F, PANG Y, et al. Reconstruction of an informative railway wheel defect signal from wheel-rail contact signals measured by multiple wayside sensors[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 233(1): 49-62. doi: 10.1177/0954409718784362 [109] LIANG B, IWNICKI S D, ZHAO Y, et al. Railway wheel-flat and rail surface defect modelling and analysis by time-frequency techniques[J]. Vehicle System Dynamics, 2013, 51(9): 1403-1421. doi: 10.1080/00423114.2013.804192 [110] LIU Xiao-zhou, NI Yi-qing. Wheel tread defect detection for high-speed trains using FBG-based online monitoring techniques[J]. Smart Structures and Systems, 2018, 21(5): 687-694. http://smartsearch.nstl.gov.cn/paper_detail.html?id=671acebe9d47517ff4140ecf05003166 [111] DU Cong, DUTTA S, KURUP P, et al. A review of railway infrastructure monitoring using fiber optic sensors[J]. Sensors and Actuators A: Physical, 2020, 303: 111728. doi: 10.1016/j.sna.2019.111728 [112] WEI Chu-liang, XIN Qin, CHUNG W H, et al. Real-time train wheel condition monitoring by fiber Bragg grating sensors[J]. International Journal of Distributed Sensor Networks, 2011, 8(1): 409048. http://www.oalib.com/paper/55817 [113] ROVERI N, CARCATERRA A, SESTIERI A. Integrated system for SHM and wear estimation of railway infrastructures[C]//University of Rome. 7th International Conference on Acoustical and Vibratory Surveillance Methods and Diagnostic Techniques. Rome: University of Rome, 2013: 1-19. [114] KRAEMER P, FRIEDMANN H, RICHTER M. Vibration-based damage identification on the suspension of a railway wagon-findings from snap-back experiments with transient excitation[J]. International Journal of Rail Transportation, 2020, 8: 387-400. doi: 10.1080/23248378.2019.1675190 [115] 梁建英. 高速列车智能诊断与故障预测技术研究[J]. 北京交通大学学报, 2019, 43(1): 63-70. doi: 10.11860/j.issn.1673-0291.2019.01.007LIANG Jian-ying. Research on intelligent diagnosis and fault prediction technology for high speed trains[J]. Journal of Beijing Jiaotong University, 2019, 43(1): 63-70. (in Chinese). doi: 10.11860/j.issn.1673-0291.2019.01.007 [116] MAGEL E, KALOUSEK J. Designing and assessing wheel/rail profiles for improved rolling contact fatigue and wear performance[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2017, 231(7): 805-818. doi: 10.1177/0954409717708079 [117] BIELAK J, NOH H Y, LEDERMAN G, et al. Infrastructure monitoring from an in-service light rail vehicle[D]. Washington DC: U.S. Department of Transportation, 2016. [118] VAICIUNAS G, BUREIKA G, STEISUNAS S. Rail vehicle axle-box bearing damage detection considering the intensity of heating alteration[J]. Eksploatacja i Niezawodnosc—Maintenance and Reliability, 2020, 22(4): 724-729. doi: 10.17531/ein.2020.4.16 [119] KUNDU P, DARPE A K, SINGH S P, et al. A review on condition monitoring technologies for railway rolling stock[C]// PHMS. Fourth European Conference of the Prognostics and Health Management Society. Utrecht: PHMS, 2018: 1-13. [120] KUKENAS V, KHARITONOV B, LEVINZON M, et al. Improvement of diagnostic parameters of a rolling wheel with flat spot and experimental test on Lithuanian railways[J]. Applied Sciences, 2020, 10(20): 7148. doi: 10.3390/app10207148 [121] STEISUNAS S, BUREIKA G, VAICIUNAS G, et al. Estimation of ambient temperature impact on vertical dynamic behaviour of passenger rail vehicle with damaged wheels[J]. Journal of Mechanical Science and Technology, 2018, 32(11): 5179-5188. doi: 10.1007/s12206-018-1016-9 [122] WANG G, CAI G, YIN X. A study on detection technology of rail transit vehicle wheel web based on lamb wave[C]// Springer. International Conference on Electrical and Information Technologies for Rail Transportation. Berlin: Springer, 2019: 735-743. [123] JESUSSEK M, ELLERMANN K. Fault detection and isolation for a full-scale railway vehicle suspension with multiple Kalman filters[J]. Vehicle System Dynamics, 2014, 52(12): 1695-1715. doi: 10.1080/00423114.2014.959026 [124] JESUSSEK M, ELLERMANN K. Fault detection and isolation for a nonlinear railway vehicle suspension with a hybrid extended Kalman filter[J]. Vehicle System Dynamics, 2013, 51(10): 1489-1501. doi: 10.1080/00423114.2013.810764 [125] SAKELLARIOU J S, PETSOUNIS K A, FASSOIS S D. Vibration based fault diagnosis for railway vehicle suspensions via a functional model based method: a feasibility study[J]. Journal of Mechanical Science and Technology, 2015, 29(2): 471-484. doi: 10.1007/s12206-015-0107-0 [126] LIU X Y, ALFI S, BRUNI S. An efficient recursive least square-based condition monitoring approach for a rail vehicle suspension system[J]. Vehicle System Dynamics, 2016, 54(6): 814-830. doi: 10.1080/00423114.2016.1164869 [127] JUNG H N, MVNKER T, KAMPMANN G, et al. A probabilistic approach for fault detection of railway suspensions[C]//Stanford University. Proceedings of International Conference on Structural Health Monitoring. Stanford: Stanford University, 2017: 11-13. [128] WEI Xiu-kun, JIA Li-min, LIU Hai. A comparative study on fault detection methods of rail vehicle suspension systems based on acceleration measurements[J]. Vehicle System Dynamics, 2013, 51(5): 700-720. doi: 10.1080/00423114.2013.767464 [129] TSUNASHIMA H. Railway condition monitoring, present and application for regional railways[R]. Tokyo: Nihon University, 2017. [130] LI Chun-sheng, LUO Shi-hui, COLE C, et al. An overview: modern techniques for railway vehicle on-board health monitoring systems[J]. Vehicle System Dynamics, 2017, 55(7): 1045-1070. doi: 10.1080/00423114.2017.1296963