留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

薄直中隔墙连拱隧道钢带加固措施抗震效果

王明年 李泽星 唐浪洲 于丽 路明

王明年, 李泽星, 唐浪洲, 于丽, 路明. 薄直中隔墙连拱隧道钢带加固措施抗震效果[J]. 交通运输工程学报, 2024, 24(3): 124-138. doi: 10.19818/j.cnki.1671-1637.2024.03.008
引用本文: 王明年, 李泽星, 唐浪洲, 于丽, 路明. 薄直中隔墙连拱隧道钢带加固措施抗震效果[J]. 交通运输工程学报, 2024, 24(3): 124-138. doi: 10.19818/j.cnki.1671-1637.2024.03.008
WANG Ming-nian, LI Ze-xing, TANG Lang-zhou, YU Li, LU Ming. Seismic performance of steel strip reinforcement measure on double-arch tunnel with thin and straight mid-partition wall[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 124-138. doi: 10.19818/j.cnki.1671-1637.2024.03.008
Citation: WANG Ming-nian, LI Ze-xing, TANG Lang-zhou, YU Li, LU Ming. Seismic performance of steel strip reinforcement measure on double-arch tunnel with thin and straight mid-partition wall[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 124-138. doi: 10.19818/j.cnki.1671-1637.2024.03.008

薄直中隔墙连拱隧道钢带加固措施抗震效果

doi: 10.19818/j.cnki.1671-1637.2024.03.008
基金项目: 

国家自然科学基金项目 52378411

四川省交通运输科技项目 2021-ZL-09

详细信息
    作者简介:

    王明年(1965-),男,安徽舒城人,西南交通大学教授,工学博士,从事隧道工程智能建造、通风防灾和抗震减震理论研究

    通讯作者:

    于丽(1978-),女,辽宁大连人,西南交通大学教授,工学博士

  • 中图分类号: U451

Seismic performance of steel strip reinforcement measure on double-arch tunnel with thin and straight mid-partition wall

Funds: 

National Natural Science Foundation of China 52378411

Transportation Science and Technology Project of Sichuan Province 2021-ZL-09

More Information
  • 摘要: 以宁巧隧道工程为研究对象,基于地震易损性分析方法,在FLAC3D中建立了三维动力时程数值计算模型;通过Python语言进行二次开发,实现了易损性分析中增量动力分析方法的全流程自动化计算;给出了薄直中隔墙连拱隧道结构在有无钢带加固措施、2种地震波入射方向(水平与竖直方向)、2种围岩级别(Ⅳ与Ⅴ级)共8种不同因素组合下的易损性曲线,得到了结构在隧址区抗震设防烈度下的损伤概率;通过对比分析损伤概率评价了钢带加固措施的抗震效果及规律;通过大型振动台试验,对比相似模型结构在有无抗震措施下的破坏形态和损伤程度,验证了钢带加固措施的实际作用效果。研究结果表明:无论何种因素组合,钢带加固措施均能有效减小结构在不同损伤状态下的损伤概率,作用效果受围岩级别影响较大,受地震波入射方向影响较小;Ⅴ级围岩条件下,其轻微、中度、重度损伤状态下的损伤概率在地震波水平方向入射时分别减小了51.94%、41.29%、29.63%,在竖直方向入射时分别减小了55.68%、48.32%、35.29%;Ⅳ级围岩条件下,其轻微、中度、重度损伤状态下的损伤概率在地震波水平方向入射时分别减小了16.45%、11.19%、7.11%,在竖直方向入射时分别减小了12.23%、9.45%、7.49%;振动台试验中,使用钢带加固后的相似模型在最不利因素组合条件下的损伤程度明显低于无抗震措施结构;钢带加固措施能通过提高结构整体承载能力,有效地减少病害数量,降低结构损伤程度,提高结构抗震性能。

     

  • 图  1  隧道断面结构(单位:mm)

    Figure  1.  Cross section structure of tunnel (unit: mm)

    图  2  数值计算模型(单位:m)

    Figure  2.  Numerical calculation model (unit: m)

    图  3  钢带加固措施隧道数值计算模型

    Figure  3.  Numerical calculation model of tunnel with steel strip reinforcement measure

    图  4  归一化后的地震波反应谱曲线

    Figure  4.  Normalized seismic wave response spectrum curves

    图  5  ln(D)-S回归曲线

    Figure  5.  Regression curves of ln(D)-S

    图  6  不同围岩级别条件下易损性曲线(地震波水平方向入射)

    Figure  6.  Vulnerability curves under different surrounding rock grade conditions (seismic waves are incident in horizontal direction)

    图  7  不同围岩级别条件下易损性曲线(地震波竖直方向入射)

    Figure  7.  Vulnerability curves under different surrounding rock grade conditions (seismic waves are incident in vertical direction)

    图  8  结构在不同因素组合下的不同程度损伤概率(S=0.4g)

    Figure  8.  Damage probabilities of structure in different degrees under different combinations of factors (S=0.4g)

    图  9  隧道数值计算模型内力监测点

    Figure  9.  Internal force monitoring points of tunnel numerical calculation model

    图  10  各监测点的最大弯矩

    Figure  10.  Maximum bending moments of each monitoring point

    图  11  振动台试验模型

    Figure  11.  Shaking table test model

    图  12  隧道模型节段布置

    Figure  12.  Layout of tunnel model segments

    图  13  含钢带加固措施的隧道相似模型

    Figure  13.  Similar model of tunnel with steel strip reinforcement measure

    图  14  结构病害

    Figure  14.  Structure diseases

    图  15  结构病害分布

    Figure  15.  Distribution of structure diseases

    图  16  2号和3号节段拱肩部位病害

    Figure  16.  Damages at spandrels of No.2 and No.3 segments

    图  17  2号和3号节段仰拱墙脚部位病害

    Figure  17.  Damages at invert foot of No.2 and No.3 segments

    表  1  围岩和结构材料的物理力学参数

    Table  1.   Physical and mechanical parameters of surrounding rocks and structure materials

    材料 弹性模量/ GPa 泊松比 内摩擦角/ (°) 黏聚力/ MPa 重度/ (kN·m-3)
    Ⅳ级围岩 2.034 0.20 43.35 0.636 27.0
    Ⅴ级围岩 0.720 0.25 29.75 0.005 25.0
    二次衬砌 31.500 0.20 25.0
    初期支护 26.000 0.20 22.0
    中隔墙 31.500 0.20 25.0
    Q345镀锌钢带 206.000 0.30 78.6
    下载: 导出CSV

    表  2  结构损伤状态类别

    Table  2.   Classification of structural damage status

    损伤状态编号 损伤状态 损伤指数范围 损伤指数中值
    0 无损伤 D≤1.0
    1 轻微损伤 1.0<D≤1.5 1.25
    2 中度损伤 1.5<D≤2.5 2.00
    3 重度损伤 2.5<D≤3.5 3.00
    4 完全破坏 D>3.5
    下载: 导出CSV

    表  3  选择的地震波信息

    Table  3.   Information of selected seismic waves

    序号 地震波名称 台站 年份 震级 5%~95%有效持时/s PGA/g
    1 Helena_ Montana-01 Carroll College 1935 6.00 2.5 0.10
    2 Imperial Valley-02 El Centro Array #9 1940 6.95 24.2 0.18
    3 Northern Calif-01 Ferndale City Hall 1941 6.40 15.5 0.38
    4 Borrego El Centro Array #9 1942 6.50 37.2 0.32
    5 Kern County LA-Hollywood Stor FF 1952 7.36 33.5 0.21
    6 Northern Calif-03 Ferndale City Hall 1954 6.50 19.4 0.42
    7 El Alamo El Centro Array #9 1956 6.80 40.9 0.14
    8 Hollister-01 Hollister City Hall 1961 5.60 18.7 0.36
    9 Hollister-02 Hollister City Hall 1961 5.50 16.5 0.32
    10 Parkfield Temblor Pre-1969 1966 6.19 5.5 0.14
    11 Northern Calif-05 Ferndale City Hall 1967 5.60 22.1 0.33
    12 Borrego Mtn El Centro Array #9 1968 6.63 49.3 0.32
    13 San Fernando San Juan Capistrano 1971 6.61 48.2 0.21
    14 Managua_ Nicaragua-02 Managua_ ESSO 1972 5.20 8.1 0.18
    15 Point Mugu Port Hueneme 1973 5.65 13.8 0.44
    下载: 导出CSV

    表  4  振动台试验模型各物理量相似比

    Table  4.   Similarity ratios of each physical quantity in shaking table test model

    类型 物理量 相似比
    基本物理量 长度 1/30
    弹性模量 1/45
    密度 1/1.5
    推导物理量 应变 1
    应力 1/15
    摩擦角 1
    时间 1/5.477
    频率 5.477
    速度 1/5.477
    刚度 1/1 350
    载荷 1/40 500
    质量 1/40 500
    下载: 导出CSV

    表  5  原型、理论模型、试验模型衬砌材料的物理力学参数

    Table  5.   Physical and mechanical parameters of lining materials in prototype, theoretical model, test model

    参数 密度/(kg·m-3) 弹性模量/MPa 单轴抗压强度/MPa
    原型 2 500.00 31 500.0 26.30
    理论模型 1 666.67 700.0 0.58
    试验模型 1 533.33 749.3 0.50
    下载: 导出CSV

    表  6  原型、理论模型、试验模型围岩材料的物理力学参数

    Table  6.   Physical and mechanical parameters of surrounding rock materials in prototype, theoretical model, test model

    参数 密度/ (kg·m-3) 弹性模量/ GPa 黏聚力/ kPa 内摩擦角/ (°)
    原型 2 500.00 0.72 5.00 29.75
    理论模型 1 666.67 0.08 0.11 29.75
    试验模型 1 426.62 0.02 0.07 25.20
    下载: 导出CSV
  • [1] 杨果林, 胡敏, 阳明, 等. 连拱隧道复合式中墙偏转机制及其预防措施[J]. 地下空间与工程学报, 2019, 15(增1): 305-310. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2019S1045.htm

    YANG Guo-Lin, HU Min, YANG Ming, et al. Research on deflection mechanism of compound middle wall of double-arched tunnel and preventive measures[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(S1): 305-310. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2019S1045.htm
    [2] 肖林萍, 赵玉光, 申玉生. 双连拱隧道结构内力样式及围岩稳定性模型试验研究[J]. 岩石力学与工程学报, 2005, 24(23): 4346-4351. doi: 10.3321/j.issn:1000-6915.2005.23.023

    XIAO Lin-ping, ZHAO Yu-guang, SHEN Yu-sheng. Model experimental study on style of structrual internal force and stability of surrounding rock in double-arch tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(23): 4346-4351. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.23.023
    [3] 李建宇, 杨建辉, 王振兴. 软弱地层双连拱隧道中隔墙结构型式选择及稳定性研究[J]. 土木工程学报, 2017, 50(增2): 236-242. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2017S2037.htm

    LI Jian-yu, YANG Jian-hui, WANG Zhen-xing. Study on selection of structural type selection and stability for mid-partition wall of double-arch tunnel in soft stratum[J]. China Civil Engineering Journal, 2017, 50(S2): 236-242. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2017S2037.htm
    [4] 赵虓. 方家湾隧道洞口段地震响应分析及抗震措施研究[D]. 兰州: 兰州交通大学, 2020.

    ZHAO Xiao. Analysis of seismic response and research on anti-seismic measures for the entrance of Fangjiawan Tunnel[D]. Lanzhou: Lanzhou Jiaotong University, 2020. (in Chinese)
    [5] 王峥峥, 王正松, 高波. 高烈度地震区连拱隧道洞口段抗震措施研究[J]. 中国公路学报, 2011, 24(6): 80-85. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201106015.htm

    WANG Zheng-zheng, WANG Zheng-song, GAO Bo. Research on seismic measures of double-arch tunnel portals in high-intensity earthquake zone[J]. China Journal of Highway and Transport, 2011, 24(6): 80-85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201106015.htm
    [6] 王正松. 双连拱隧道洞口段地震动力响应及减震措施研究[D]. 成都: 西南交通大学, 2008.

    WANG Zheng-song. Study on seismic dynamic response and vibration absorbing measures for portal of double-arch tunnel[D]. Chengdu: Southwest Jiaotong University, 2008. (in Chinese)
    [7] 朱正国, 余剑涛, 隋传毅, 等. 高烈度活断层地区隧道结构抗震的综合措施[J]. 中国铁道科学, 2014, 35(6): 55-62. doi: 10.3969/j.issn.1001-4632.2014.06.09

    ZHU Zheng-guo, YU Jian-tao, SUI Chuan-yi, et al. Comprehensive seismic measures for tunnel structure in the area of high intensity active fault[J]. China Railway Science, 2014, 35(6): 55-62. (in Chinese) doi: 10.3969/j.issn.1001-4632.2014.06.09
    [8] 刘庭金, 黄鸿浩, 许饶, 等. 粘贴钢板加固地铁盾构隧道承载性能研究[J]. 中国公路学报, 2017, 30(8): 91-99. doi: 10.3969/j.issn.1001-7372.2017.08.010

    LIU Ting-jin, HUANG Hong-hao, XU Rao, et al. Research on load-bearing capacity of metro shield tunnel lining strengthened by bonded steel plates[J]. China Journal of Highway and Transport, 2017, 30(8): 91-99. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.08.010
    [9] 张波, 杨勇, 刘义, 等. 预应力钢带加固钢筋混凝土柱轴压性能试验研究[J]. 工程力学, 2016, 33(3): 104-111. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201603014.htm

    ZHANG Bo, YANG Yong, LIU Yi, et al. Experimental study on axial compression performance of reinforced concrete column retrofitted by prestressed steel strip[J]. Engineering Mechanics, 2016, 33(3): 104-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201603014.htm
    [10] 陈江, 阳军生, 曹能学, 等. 铁路隧道衬砌裂缝整治及衬砌补强加固设计研究[J]. 中国安全生产科学技术, 2014, 10(9): 134-139. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201409028.htm

    CHEN Jiang, YANG Jun-sheng, CAO Neng-xue, et al. Study on crack remediation and reinforcement of lining in railway tunnel[J]. Journal of Safety Science and Technology, 2014, 10(9): 134-139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201409028.htm
    [11] VERDERAME G M, RICCI P, DE RISI M T, et al. Experimental response of unreinforced exterior RC joints strengthened with prestressed steel strips[J]. Engineering Structures, 2022, 251: 113358. doi: 10.1016/j.engstruct.2021.113358
    [12] 李宏男, 成虎, 王东升. 桥梁结构地震易损性研究进展述评[J]. 工程力学, 2018, 35(9): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201809003.htm

    LI Hong-nan, CHENG Hu, WANG Dong-sheng. A review of advances in seismic fragility research on bridge structures[J]. Engineering Mechanics, 2018, 35(9): 1-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201809003.htm
    [13] 吴桥, 程永志, 黄超. 隧道工程地震易损性分析研究综述与展望[J]. 世界地震工程, 2020, 36(2): 191-199. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC202002021.htm

    WU Qiao, CHENG Yong-zhi, HUANG Chao. Research review and future prospect of the seismic fragility analysis for tunnel engineering[J]. World Earthquake Engineering, 2020, 36(2): 191-199. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC202002021.htm
    [14] 丁祖德, 资昊, 计霞飞, 等. 考虑衬砌劣化的山岭隧道地震易损性分析[J]. 岩石力学与工程学报, 2020, 39(3): 581-592. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202003013.htm

    DING Zu-de, ZI Hao, JI Xia-fei, et al. Seismic fragility analysis of mountain tunnels considering lining degradation[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(3): 581-592. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202003013.htm
    [15] 陈誉升, 丁祖德, 资昊, 等. 考虑空洞影响的盾构隧道地震易损性分析[J]. 岩土力学, 2021, 42(12): 3385-3396. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202112018.htm

    CHEN Yu-sheng, DING Zu-de, ZI Hao, et al. Seismic vulnerability analysis of shield tunnels considering cavitation[J]. Rock and Soil Mechanics, 2021, 42(12): 3385-3396. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202112018.htm
    [16] HUANG Z K, PITILAKIS K, TSINIDIS G, et al. Seismic vulnerability of circular tunnels in soft soil deposits: the case of Shanghai metropolitan system[J]. Tunnelling and Underground Space Technology, 2020, 98: 103341. doi: 10.1016/j.tust.2020.103341
    [17] ARGYROUDIS S, TSINIDIS G, GATTI F, et al. Effects of SSI and lining corrosion on the seismic vulnerability of shallow circular tunnels[J]. Soil Dynamics and Earthquake Engineering, 2017, 98: 244-256. doi: 10.1016/j.soildyn.2017.04.016
    [18] HUH J, TRAN Q H, HALDAR A, et al. Seismic vulnerability assessment of a shallow two-story underground RC box structure[J]. Applied Sciences, 2017, DOI: 10.3390/app7070735.
    [19] ZHANG Ying-bing, ZHANG Jue, CHEN Guang-qi, et al. Effects of vertical seismic force on initiation of the Daguangbao landslide induced by the 2008 Wenchuan Earthquake[J]. Soil Dynamics and Earthquake Engineering, 2015, 73: 91-102. doi: 10.1016/j.soildyn.2014.06.036
    [20] 刘积魁, 方云, 刘智, 等. 钓鱼城遗址始关门破坏机制研究与FLAC3D地震动力响应模拟[J]. 岩土力学, 2011, 32(4): 1249-1254. doi: 10.3969/j.issn.1000-7598.2011.04.049

    LIU Ji-kui, FANG Yun, LIU Zhi, et al. Study of damage mechanism and FLAC3D simulation of the seismic dynamic response of Shiguan gate in Diaoyucheng ruins[J]. Rock and Soil Mechanics, 2011, 32(4): 1249-1254. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.04.049
    [21] LE T S, HUH J, PARK J H. Earthquake fragility assessment of the underground tunnel using an efficient SSI analysis approach[J]. Journal of Applied Mathematics and Physics, 2014, 2(12): 1073-1078. doi: 10.4236/jamp.2014.212123
    [22] 周志光, 任永强. 地震作用下软土隧道的易损性分析[J]. 结构工程师, 2018, 34(增): 122-129. https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC2018S1019.htm

    ZHOU Zhi-guang, REN Yong-qiang. Seismic fragility analysis of tunnels in soft soils[J]. Structural Engineers, 2018, 34(S): 122-129. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC2018S1019.htm
    [23] 禹海涛, 李心熙, 袁勇, 等. 沉管隧道纵向地震易损性分析方法[J]. 中国公路学报, 2022, 35(10): 13-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202210002.htm

    YU Hai-tao, LI Xin-xi, YUAN Yong, et al. Seismic vulnerability analysis method for longitudinal response of immersed tunnels[J]. China Journal of Highway and Transport, 2022, 35(10): 13-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202210002.htm
    [24] 刘立荣, 王海彦, 黄黆. 考虑不确定因素的山岭隧道地震易损性研究[J]. 世界地震工程, 2018, 34(1): 173-178. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC201801021.htm

    LIU Li-rong, WANG Hai-yan, HUANG Ji. Study on vulnerability analysis of rock mountain tunnel considering uncertainties[J]. World Earthquake Engineering, 2018, 34(1): 173-178. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC201801021.htm
    [25] SILVA F D, FABOZZI S, NIKITAS N, et al. Seismic vulnerability of circular tunnels in sand[J]. Géotechnique, 2020(7): 1-34.
    [26] 黄忠凯, 张冬梅. 地下结构地震易损性研究进展[J]. 同济大学学报(自然科学版), 2021, 49(1): 49-59, 115. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202101007.htm

    HUANG Zhong-kai, ZHANG Dong-mei. Recent advance in seismic fragility research of underground structures[J]. Journal of Tongji University (Natural Science), 2021, 49(1): 49-59, 115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202101007.htm
    [27] 龚君康. 运营公路隧道衬砌钢带加固数值模型研究[D]. 重庆: 重庆交通大学, 2017.

    GONG Jun-kang. Study on numerical model of steel strip reinforcement on highway tunnel lining in operation[D]. Chongqing: Chongqing Jiaotong University, 2017. (in Chinese)
    [28] KAPPOS A J, PANAGOPOULOS G, PANAGIOTOPOULOS C, et al. A hybrid method for the vulnerability assessment of R/C and URM buildings[J]. Bulletin of Earthquake Engineering, 2006, 4(4): 391-413.
    [29] 陆新征, 施炜, 张万开, 等. 三维地震动输入对IDA倒塌易损性分析的影响[J]. 工程抗震与加固改造, 2011, 33(6): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKZ201106002.htm

    LU Xin-zheng, SHI Wei, ZHANG Wan-kai, et al. Influence of three-dimensional ground motion input on IDA-based collapse fragility analysis[J]. Earthquake Resistant Engineering and Retrofitting, 2011, 33(6): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKZ201106002.htm
    [30] RAA B, DG C. Component level seismic fragility functions and damage probability matrices for Nepali school buildings[J]. Soil Dynamics and Earthquake Engineering, 2019, 120: 316-319.
    [31] CHOI E, DESROCHES R, NIELSON B. Seismic fragility of typical bridges in moderate seismic zone[J]. Engineering Structures, 2004, 26(2): 187-199.
    [32] MOSCHONAS I F, KAPPOS A J, PANETSOS P, et al. Seismic fragility curves for greek bridges: methodology and case studies[J]. Bulletin of Earthquake Engineering, 2009, 7(2): 439-468.
    [33] ARGYROUDIS S A, PITILAKIS K D. Seismic fragility curves of shallow tunnels in alluvial deposits[J]. Soil Dynamics and Earthquake Engineering, 2012, 35: 1-12.
    [34] HUANG Guang, QIU Wen-ge, ZHANG Jun-ru. Modelling seismic fragility of a rock mountain tunnel based on support vector machine[J]. Soil Dynamics and Earthquake Engineering, 2017, 102: 160-171.
    [35] QIU Wen-ge, HUANG Guang, ZHOU Hui-chao, et al. Seismic vulnerability analysis of rock mountain tunnel[J]. International Journal of Geomechanics, 2018, 18(3): 1-16
    [36] 范刚, 马洪生, 张建经. 汶川地震隧道概率易损性模型研究[J]. 铁道建筑, 2012, 52(10): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201210014.htm

    FAN Gang, MA Hong-sheng, ZHANG Jian-jing. Study on probability model of vulnerability for tunnels in Wenchuan Earthquake[J]. Railway Engineering, 2012, 52(10): 40-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201210014.htm
    [37] DIMITRIOS V, CORNELL C A. Incremental dynamic analysis[J]. Earthquake Engineering and Structural Dynamics, 2002, 31: 491-514.
    [38] 罗立娜. 碳纤维补强条件下公路隧道衬砌计算方法的研究[D]. 上海: 同济大学, 2006.

    LUO Li-na. On the calculation method of CFRP strengthened highway tunnel lining[D]. Shanghai: Tongji University, 2006. (in Chinese)
    [39] 胡瑞青. 不同围岩和埋深条件下土-结构接触界面对衬砌结构横向地震响应特性的影响分析[J]. 隧道建设(中英文), 2018, 38(12): 1957-1965. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201812007.htm

    HU Rui-qing. Analysis of influence of soil-structure interface on transverse seismic response characteristics of lining structure under different surrounding rocks and buried depths[J]. Tunnel Construction, 2018, 38(12): 1957-1965. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201812007.htm
    [40] 闻毓民, 信春雷, 申玉生, 等. 隧道衬砌结构减震层效能评定方法的振动台试验研究[J]. 振动与冲击, 2022, 41(5): 197-207. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202205026.htm

    WEN Yu-min, XIN Chun-lei, SHEN Yu-sheng, et al. Shaking table tests for effectiveness evaluation method of damping layer of tunnel lining structure[J]. Journal of Vibration and Shock, 2022, 41(5): 197-207. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202205026.htm
    [41] 闫高明, 申玉生, 高波, 等. 穿越断层隧道钢筋橡胶接头振动台试验研究[J]. 振动与冲击, 2021, 40(13): 129-135, 153. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202113017.htm

    YAN Gao-ming, SHEN Yu-sheng, GAO Bo, et al. Shaking table tests of reinforced rubber joint in cross fault tunnel[J]. Journal of Vibration and Shock, 2021, 40(13): 129-135, 153. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202113017.htm
    [42] 范凯祥, 申玉生, 高波, 等. 穿越软硬围岩隧道设置减震层振动台试验研究[J]. 土木工程学报, 2019, 52(9): 109-120, 128. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201909010.htm

    FAN Kai-xiang, SHEN Yu-sheng, GAO Bo, et al. Shaking table test on damping layer applied in tunnel crossing soft and hard surrounding rock[J]. China Civil Engineering Journal, 2019, 52(9): 109-120, 128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201909010.htm
  • 加载中
图(17) / 表(6)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  68
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-25
  • 网络出版日期:  2024-07-18
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回