Seismic performance of steel strip reinforcement measure on double-arch tunnel with thin and straight mid-partition wall
-
摘要: 以宁巧隧道工程为研究对象,基于地震易损性分析方法,在FLAC3D中建立了三维动力时程数值计算模型;通过Python语言进行二次开发,实现了易损性分析中增量动力分析方法的全流程自动化计算;给出了薄直中隔墙连拱隧道结构在有无钢带加固措施、2种地震波入射方向(水平与竖直方向)、2种围岩级别(Ⅳ与Ⅴ级)共8种不同因素组合下的易损性曲线,得到了结构在隧址区抗震设防烈度下的损伤概率;通过对比分析损伤概率评价了钢带加固措施的抗震效果及规律;通过大型振动台试验,对比相似模型结构在有无抗震措施下的破坏形态和损伤程度,验证了钢带加固措施的实际作用效果。研究结果表明:无论何种因素组合,钢带加固措施均能有效减小结构在不同损伤状态下的损伤概率,作用效果受围岩级别影响较大,受地震波入射方向影响较小;Ⅴ级围岩条件下,其轻微、中度、重度损伤状态下的损伤概率在地震波水平方向入射时分别减小了51.94%、41.29%、29.63%,在竖直方向入射时分别减小了55.68%、48.32%、35.29%;Ⅳ级围岩条件下,其轻微、中度、重度损伤状态下的损伤概率在地震波水平方向入射时分别减小了16.45%、11.19%、7.11%,在竖直方向入射时分别减小了12.23%、9.45%、7.49%;振动台试验中,使用钢带加固后的相似模型在最不利因素组合条件下的损伤程度明显低于无抗震措施结构;钢带加固措施能通过提高结构整体承载能力,有效地减少病害数量,降低结构损伤程度,提高结构抗震性能。Abstract: The Ningqiao Tunnel project was taken as the research object, and a three-dimensional dynamic time-history numerical calculation model was established in FLAC3D based on seismic vulnerability analysis method. The full-process automation calculation of the incremental dynamic analysis method in seismic vulnerability analysis was achieved through secondary development by Python. The vulnerability curves of the double-arch tunnel structure with thin and straight mid-partition wall under the eight different combinations of factors were given, including the measures with and without steel strip reinforcement, two directions of seismic wave incidences (horizontal and vertical directions), and two types of surrounding rock grades (Ⅳ and Ⅴ grades). According to the vulnerability curves, the damage probabilities of the structure at the tunnel site under seismic fortification intensity were obtained. The seismic performance and the pattern of steel strip reinforcement measures were evaluated by comparing the damage probabilities. The actual effect of steel strip reinforcement measures was verified by comparing the failure patterns and damage degrees of similar model structures with and without seismic measures based on a large-scale shaking table test. Research results show that regardless of the factor combination, the steel strip reinforcement measures can effectively reduce the damage probabilities of the structure in different damage states. The effectiveness is significantly influenced by the surrounding rock grade but less by the direction of seismic wave incidence. Under the Ⅴ grade surrounding rock condition, the probabilities of slight, moderate, and severe damages reduce by 51.94%, 41.29%, and 29.63%, respectively when the seismic waves are incident in the horizontal direction, and reduce by 55.68%, 48.32%, and 35.29%, respectively when the seismic waves are incident in the vertical direction. Under the Ⅳ grade surrounding rock condition, the probabilities of slight, moderate, and severe damages reduce by 16.45%, 11.19%, and 7.11%, respectively when the seismic waves are incident in the horizontal direction, and reduce by 12.23%, 9.45%, and 7.49%, respectively when the seismic waves are incident in the vertical direction. In the shaking table test, the damage degree of the similar model structure with steel strip reinforcement measures under the most unfavorable factor combination is significantly lower than the structure without seismic measure. The steel strip reinforcement measures can effectively reduce the number of diseases, lower the degree of structural damage, and enhance the seismic performance of the structure by improving the overall load-bearing capacity of the structure.
-
表 1 围岩和结构材料的物理力学参数
Table 1. Physical and mechanical parameters of surrounding rocks and structure materials
材料 弹性模量/ GPa 泊松比 内摩擦角/ (°) 黏聚力/ MPa 重度/ (kN·m-3) Ⅳ级围岩 2.034 0.20 43.35 0.636 27.0 Ⅴ级围岩 0.720 0.25 29.75 0.005 25.0 二次衬砌 31.500 0.20 25.0 初期支护 26.000 0.20 22.0 中隔墙 31.500 0.20 25.0 Q345镀锌钢带 206.000 0.30 78.6 表 2 结构损伤状态类别
Table 2. Classification of structural damage status
损伤状态编号 损伤状态 损伤指数范围 损伤指数中值 0 无损伤 D≤1.0 1 轻微损伤 1.0<D≤1.5 1.25 2 中度损伤 1.5<D≤2.5 2.00 3 重度损伤 2.5<D≤3.5 3.00 4 完全破坏 D>3.5 表 3 选择的地震波信息
Table 3. Information of selected seismic waves
序号 地震波名称 台站 年份 震级 5%~95%有效持时/s PGA/g 1 Helena_ Montana-01 Carroll College 1935 6.00 2.5 0.10 2 Imperial Valley-02 El Centro Array #9 1940 6.95 24.2 0.18 3 Northern Calif-01 Ferndale City Hall 1941 6.40 15.5 0.38 4 Borrego El Centro Array #9 1942 6.50 37.2 0.32 5 Kern County LA-Hollywood Stor FF 1952 7.36 33.5 0.21 6 Northern Calif-03 Ferndale City Hall 1954 6.50 19.4 0.42 7 El Alamo El Centro Array #9 1956 6.80 40.9 0.14 8 Hollister-01 Hollister City Hall 1961 5.60 18.7 0.36 9 Hollister-02 Hollister City Hall 1961 5.50 16.5 0.32 10 Parkfield Temblor Pre-1969 1966 6.19 5.5 0.14 11 Northern Calif-05 Ferndale City Hall 1967 5.60 22.1 0.33 12 Borrego Mtn El Centro Array #9 1968 6.63 49.3 0.32 13 San Fernando San Juan Capistrano 1971 6.61 48.2 0.21 14 Managua_ Nicaragua-02 Managua_ ESSO 1972 5.20 8.1 0.18 15 Point Mugu Port Hueneme 1973 5.65 13.8 0.44 表 4 振动台试验模型各物理量相似比
Table 4. Similarity ratios of each physical quantity in shaking table test model
类型 物理量 相似比 基本物理量 长度 1/30 弹性模量 1/45 密度 1/1.5 推导物理量 应变 1 应力 1/15 摩擦角 1 时间 1/5.477 频率 5.477 速度 1/5.477 刚度 1/1 350 载荷 1/40 500 质量 1/40 500 表 5 原型、理论模型、试验模型衬砌材料的物理力学参数
Table 5. Physical and mechanical parameters of lining materials in prototype, theoretical model, test model
参数 密度/(kg·m-3) 弹性模量/MPa 单轴抗压强度/MPa 原型 2 500.00 31 500.0 26.30 理论模型 1 666.67 700.0 0.58 试验模型 1 533.33 749.3 0.50 表 6 原型、理论模型、试验模型围岩材料的物理力学参数
Table 6. Physical and mechanical parameters of surrounding rock materials in prototype, theoretical model, test model
参数 密度/ (kg·m-3) 弹性模量/ GPa 黏聚力/ kPa 内摩擦角/ (°) 原型 2 500.00 0.72 5.00 29.75 理论模型 1 666.67 0.08 0.11 29.75 试验模型 1 426.62 0.02 0.07 25.20 -
[1] 杨果林, 胡敏, 阳明, 等. 连拱隧道复合式中墙偏转机制及其预防措施[J]. 地下空间与工程学报, 2019, 15(增1): 305-310. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2019S1045.htmYANG Guo-Lin, HU Min, YANG Ming, et al. Research on deflection mechanism of compound middle wall of double-arched tunnel and preventive measures[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(S1): 305-310. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2019S1045.htm [2] 肖林萍, 赵玉光, 申玉生. 双连拱隧道结构内力样式及围岩稳定性模型试验研究[J]. 岩石力学与工程学报, 2005, 24(23): 4346-4351. doi: 10.3321/j.issn:1000-6915.2005.23.023XIAO Lin-ping, ZHAO Yu-guang, SHEN Yu-sheng. Model experimental study on style of structrual internal force and stability of surrounding rock in double-arch tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(23): 4346-4351. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.23.023 [3] 李建宇, 杨建辉, 王振兴. 软弱地层双连拱隧道中隔墙结构型式选择及稳定性研究[J]. 土木工程学报, 2017, 50(增2): 236-242. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2017S2037.htmLI Jian-yu, YANG Jian-hui, WANG Zhen-xing. Study on selection of structural type selection and stability for mid-partition wall of double-arch tunnel in soft stratum[J]. China Civil Engineering Journal, 2017, 50(S2): 236-242. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2017S2037.htm [4] 赵虓. 方家湾隧道洞口段地震响应分析及抗震措施研究[D]. 兰州: 兰州交通大学, 2020.ZHAO Xiao. Analysis of seismic response and research on anti-seismic measures for the entrance of Fangjiawan Tunnel[D]. Lanzhou: Lanzhou Jiaotong University, 2020. (in Chinese) [5] 王峥峥, 王正松, 高波. 高烈度地震区连拱隧道洞口段抗震措施研究[J]. 中国公路学报, 2011, 24(6): 80-85. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201106015.htmWANG Zheng-zheng, WANG Zheng-song, GAO Bo. Research on seismic measures of double-arch tunnel portals in high-intensity earthquake zone[J]. China Journal of Highway and Transport, 2011, 24(6): 80-85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201106015.htm [6] 王正松. 双连拱隧道洞口段地震动力响应及减震措施研究[D]. 成都: 西南交通大学, 2008.WANG Zheng-song. Study on seismic dynamic response and vibration absorbing measures for portal of double-arch tunnel[D]. Chengdu: Southwest Jiaotong University, 2008. (in Chinese) [7] 朱正国, 余剑涛, 隋传毅, 等. 高烈度活断层地区隧道结构抗震的综合措施[J]. 中国铁道科学, 2014, 35(6): 55-62. doi: 10.3969/j.issn.1001-4632.2014.06.09ZHU Zheng-guo, YU Jian-tao, SUI Chuan-yi, et al. Comprehensive seismic measures for tunnel structure in the area of high intensity active fault[J]. China Railway Science, 2014, 35(6): 55-62. (in Chinese) doi: 10.3969/j.issn.1001-4632.2014.06.09 [8] 刘庭金, 黄鸿浩, 许饶, 等. 粘贴钢板加固地铁盾构隧道承载性能研究[J]. 中国公路学报, 2017, 30(8): 91-99. doi: 10.3969/j.issn.1001-7372.2017.08.010LIU Ting-jin, HUANG Hong-hao, XU Rao, et al. Research on load-bearing capacity of metro shield tunnel lining strengthened by bonded steel plates[J]. China Journal of Highway and Transport, 2017, 30(8): 91-99. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.08.010 [9] 张波, 杨勇, 刘义, 等. 预应力钢带加固钢筋混凝土柱轴压性能试验研究[J]. 工程力学, 2016, 33(3): 104-111. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201603014.htmZHANG Bo, YANG Yong, LIU Yi, et al. Experimental study on axial compression performance of reinforced concrete column retrofitted by prestressed steel strip[J]. Engineering Mechanics, 2016, 33(3): 104-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201603014.htm [10] 陈江, 阳军生, 曹能学, 等. 铁路隧道衬砌裂缝整治及衬砌补强加固设计研究[J]. 中国安全生产科学技术, 2014, 10(9): 134-139. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201409028.htmCHEN Jiang, YANG Jun-sheng, CAO Neng-xue, et al. Study on crack remediation and reinforcement of lining in railway tunnel[J]. Journal of Safety Science and Technology, 2014, 10(9): 134-139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201409028.htm [11] VERDERAME G M, RICCI P, DE RISI M T, et al. Experimental response of unreinforced exterior RC joints strengthened with prestressed steel strips[J]. Engineering Structures, 2022, 251: 113358. doi: 10.1016/j.engstruct.2021.113358 [12] 李宏男, 成虎, 王东升. 桥梁结构地震易损性研究进展述评[J]. 工程力学, 2018, 35(9): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201809003.htmLI Hong-nan, CHENG Hu, WANG Dong-sheng. A review of advances in seismic fragility research on bridge structures[J]. Engineering Mechanics, 2018, 35(9): 1-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201809003.htm [13] 吴桥, 程永志, 黄超. 隧道工程地震易损性分析研究综述与展望[J]. 世界地震工程, 2020, 36(2): 191-199. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC202002021.htmWU Qiao, CHENG Yong-zhi, HUANG Chao. Research review and future prospect of the seismic fragility analysis for tunnel engineering[J]. World Earthquake Engineering, 2020, 36(2): 191-199. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC202002021.htm [14] 丁祖德, 资昊, 计霞飞, 等. 考虑衬砌劣化的山岭隧道地震易损性分析[J]. 岩石力学与工程学报, 2020, 39(3): 581-592. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202003013.htmDING Zu-de, ZI Hao, JI Xia-fei, et al. Seismic fragility analysis of mountain tunnels considering lining degradation[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(3): 581-592. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202003013.htm [15] 陈誉升, 丁祖德, 资昊, 等. 考虑空洞影响的盾构隧道地震易损性分析[J]. 岩土力学, 2021, 42(12): 3385-3396. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202112018.htmCHEN Yu-sheng, DING Zu-de, ZI Hao, et al. Seismic vulnerability analysis of shield tunnels considering cavitation[J]. Rock and Soil Mechanics, 2021, 42(12): 3385-3396. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202112018.htm [16] HUANG Z K, PITILAKIS K, TSINIDIS G, et al. Seismic vulnerability of circular tunnels in soft soil deposits: the case of Shanghai metropolitan system[J]. Tunnelling and Underground Space Technology, 2020, 98: 103341. doi: 10.1016/j.tust.2020.103341 [17] ARGYROUDIS S, TSINIDIS G, GATTI F, et al. Effects of SSI and lining corrosion on the seismic vulnerability of shallow circular tunnels[J]. Soil Dynamics and Earthquake Engineering, 2017, 98: 244-256. doi: 10.1016/j.soildyn.2017.04.016 [18] HUH J, TRAN Q H, HALDAR A, et al. Seismic vulnerability assessment of a shallow two-story underground RC box structure[J]. Applied Sciences, 2017, DOI: 10.3390/app7070735. [19] ZHANG Ying-bing, ZHANG Jue, CHEN Guang-qi, et al. Effects of vertical seismic force on initiation of the Daguangbao landslide induced by the 2008 Wenchuan Earthquake[J]. Soil Dynamics and Earthquake Engineering, 2015, 73: 91-102. doi: 10.1016/j.soildyn.2014.06.036 [20] 刘积魁, 方云, 刘智, 等. 钓鱼城遗址始关门破坏机制研究与FLAC3D地震动力响应模拟[J]. 岩土力学, 2011, 32(4): 1249-1254. doi: 10.3969/j.issn.1000-7598.2011.04.049LIU Ji-kui, FANG Yun, LIU Zhi, et al. Study of damage mechanism and FLAC3D simulation of the seismic dynamic response of Shiguan gate in Diaoyucheng ruins[J]. Rock and Soil Mechanics, 2011, 32(4): 1249-1254. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.04.049 [21] LE T S, HUH J, PARK J H. Earthquake fragility assessment of the underground tunnel using an efficient SSI analysis approach[J]. Journal of Applied Mathematics and Physics, 2014, 2(12): 1073-1078. doi: 10.4236/jamp.2014.212123 [22] 周志光, 任永强. 地震作用下软土隧道的易损性分析[J]. 结构工程师, 2018, 34(增): 122-129. https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC2018S1019.htmZHOU Zhi-guang, REN Yong-qiang. Seismic fragility analysis of tunnels in soft soils[J]. Structural Engineers, 2018, 34(S): 122-129. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC2018S1019.htm [23] 禹海涛, 李心熙, 袁勇, 等. 沉管隧道纵向地震易损性分析方法[J]. 中国公路学报, 2022, 35(10): 13-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202210002.htmYU Hai-tao, LI Xin-xi, YUAN Yong, et al. Seismic vulnerability analysis method for longitudinal response of immersed tunnels[J]. China Journal of Highway and Transport, 2022, 35(10): 13-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202210002.htm [24] 刘立荣, 王海彦, 黄黆. 考虑不确定因素的山岭隧道地震易损性研究[J]. 世界地震工程, 2018, 34(1): 173-178. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC201801021.htmLIU Li-rong, WANG Hai-yan, HUANG Ji. Study on vulnerability analysis of rock mountain tunnel considering uncertainties[J]. World Earthquake Engineering, 2018, 34(1): 173-178. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC201801021.htm [25] SILVA F D, FABOZZI S, NIKITAS N, et al. Seismic vulnerability of circular tunnels in sand[J]. Géotechnique, 2020(7): 1-34. [26] 黄忠凯, 张冬梅. 地下结构地震易损性研究进展[J]. 同济大学学报(自然科学版), 2021, 49(1): 49-59, 115. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202101007.htmHUANG Zhong-kai, ZHANG Dong-mei. Recent advance in seismic fragility research of underground structures[J]. Journal of Tongji University (Natural Science), 2021, 49(1): 49-59, 115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202101007.htm [27] 龚君康. 运营公路隧道衬砌钢带加固数值模型研究[D]. 重庆: 重庆交通大学, 2017.GONG Jun-kang. Study on numerical model of steel strip reinforcement on highway tunnel lining in operation[D]. Chongqing: Chongqing Jiaotong University, 2017. (in Chinese) [28] KAPPOS A J, PANAGOPOULOS G, PANAGIOTOPOULOS C, et al. A hybrid method for the vulnerability assessment of R/C and URM buildings[J]. Bulletin of Earthquake Engineering, 2006, 4(4): 391-413. [29] 陆新征, 施炜, 张万开, 等. 三维地震动输入对IDA倒塌易损性分析的影响[J]. 工程抗震与加固改造, 2011, 33(6): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKZ201106002.htmLU Xin-zheng, SHI Wei, ZHANG Wan-kai, et al. Influence of three-dimensional ground motion input on IDA-based collapse fragility analysis[J]. Earthquake Resistant Engineering and Retrofitting, 2011, 33(6): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKZ201106002.htm [30] RAA B, DG C. Component level seismic fragility functions and damage probability matrices for Nepali school buildings[J]. Soil Dynamics and Earthquake Engineering, 2019, 120: 316-319. [31] CHOI E, DESROCHES R, NIELSON B. Seismic fragility of typical bridges in moderate seismic zone[J]. Engineering Structures, 2004, 26(2): 187-199. [32] MOSCHONAS I F, KAPPOS A J, PANETSOS P, et al. Seismic fragility curves for greek bridges: methodology and case studies[J]. Bulletin of Earthquake Engineering, 2009, 7(2): 439-468. [33] ARGYROUDIS S A, PITILAKIS K D. Seismic fragility curves of shallow tunnels in alluvial deposits[J]. Soil Dynamics and Earthquake Engineering, 2012, 35: 1-12. [34] HUANG Guang, QIU Wen-ge, ZHANG Jun-ru. Modelling seismic fragility of a rock mountain tunnel based on support vector machine[J]. Soil Dynamics and Earthquake Engineering, 2017, 102: 160-171. [35] QIU Wen-ge, HUANG Guang, ZHOU Hui-chao, et al. Seismic vulnerability analysis of rock mountain tunnel[J]. International Journal of Geomechanics, 2018, 18(3): 1-16 [36] 范刚, 马洪生, 张建经. 汶川地震隧道概率易损性模型研究[J]. 铁道建筑, 2012, 52(10): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201210014.htmFAN Gang, MA Hong-sheng, ZHANG Jian-jing. Study on probability model of vulnerability for tunnels in Wenchuan Earthquake[J]. Railway Engineering, 2012, 52(10): 40-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201210014.htm [37] DIMITRIOS V, CORNELL C A. Incremental dynamic analysis[J]. Earthquake Engineering and Structural Dynamics, 2002, 31: 491-514. [38] 罗立娜. 碳纤维补强条件下公路隧道衬砌计算方法的研究[D]. 上海: 同济大学, 2006.LUO Li-na. On the calculation method of CFRP strengthened highway tunnel lining[D]. Shanghai: Tongji University, 2006. (in Chinese) [39] 胡瑞青. 不同围岩和埋深条件下土-结构接触界面对衬砌结构横向地震响应特性的影响分析[J]. 隧道建设(中英文), 2018, 38(12): 1957-1965. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201812007.htmHU Rui-qing. Analysis of influence of soil-structure interface on transverse seismic response characteristics of lining structure under different surrounding rocks and buried depths[J]. Tunnel Construction, 2018, 38(12): 1957-1965. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201812007.htm [40] 闻毓民, 信春雷, 申玉生, 等. 隧道衬砌结构减震层效能评定方法的振动台试验研究[J]. 振动与冲击, 2022, 41(5): 197-207. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202205026.htmWEN Yu-min, XIN Chun-lei, SHEN Yu-sheng, et al. Shaking table tests for effectiveness evaluation method of damping layer of tunnel lining structure[J]. Journal of Vibration and Shock, 2022, 41(5): 197-207. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202205026.htm [41] 闫高明, 申玉生, 高波, 等. 穿越断层隧道钢筋橡胶接头振动台试验研究[J]. 振动与冲击, 2021, 40(13): 129-135, 153. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202113017.htmYAN Gao-ming, SHEN Yu-sheng, GAO Bo, et al. Shaking table tests of reinforced rubber joint in cross fault tunnel[J]. Journal of Vibration and Shock, 2021, 40(13): 129-135, 153. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202113017.htm [42] 范凯祥, 申玉生, 高波, 等. 穿越软硬围岩隧道设置减震层振动台试验研究[J]. 土木工程学报, 2019, 52(9): 109-120, 128. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201909010.htmFAN Kai-xiang, SHEN Yu-sheng, GAO Bo, et al. Shaking table test on damping layer applied in tunnel crossing soft and hard surrounding rock[J]. China Civil Engineering Journal, 2019, 52(9): 109-120, 128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201909010.htm