留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢轨吸振器对轮轨摩擦自激振动的抑制效果

崔晓璐 钟言明 徐晓天 唐传平 徐佳 杨红娟 漆伟

崔晓璐, 钟言明, 徐晓天, 唐传平, 徐佳, 杨红娟, 漆伟. 钢轨吸振器对轮轨摩擦自激振动的抑制效果[J]. 交通运输工程学报, 2024, 24(3): 193-203. doi: 10.19818/j.cnki.1671-1637.2024.03.013
引用本文: 崔晓璐, 钟言明, 徐晓天, 唐传平, 徐佳, 杨红娟, 漆伟. 钢轨吸振器对轮轨摩擦自激振动的抑制效果[J]. 交通运输工程学报, 2024, 24(3): 193-203. doi: 10.19818/j.cnki.1671-1637.2024.03.013
CUI Xiao-lu, ZHONG Yan-ming, XU Xiao-tian, TANG Chuan-ping, XU Jia, YANG Hong-juan, QI Wei. Suppression effect of rail vibration absorber on self-excited vibration of wheel-rail friction[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 193-203. doi: 10.19818/j.cnki.1671-1637.2024.03.013
Citation: CUI Xiao-lu, ZHONG Yan-ming, XU Xiao-tian, TANG Chuan-ping, XU Jia, YANG Hong-juan, QI Wei. Suppression effect of rail vibration absorber on self-excited vibration of wheel-rail friction[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 193-203. doi: 10.19818/j.cnki.1671-1637.2024.03.013

钢轨吸振器对轮轨摩擦自激振动的抑制效果

doi: 10.19818/j.cnki.1671-1637.2024.03.013
基金项目: 

国家自然科学基金项目 52275176

国家自然科学基金项目 52375168

重庆市自然科学基金项目 CSTB2022NSCQ-MSX1542

重庆交通大学研究生科研创新项目 2023S0067

详细信息
    作者简介:

    崔晓璐(1990-),女,山东济南人,重庆交通大学教授,工学博士,从事轮轨摩擦学研究

  • 中图分类号: U211

Suppression effect of rail vibration absorber on self-excited vibration of wheel-rail friction

Funds: 

National Natural Science Foundation of China 52275176

National Natural Science Foundation of China 52375168

Natural Science Foundation of Chongqing CSTB2022NSCQ-MSX1542

Chongqing Jiaotong University Graduate Research and Innovation Project 2023S0067

More Information
  • 摘要: 基于摩擦自激振动理论和现场调研,建立了DTVI2和科隆蛋扣件结构支撑下的小半径曲线区段轮对-钢轨-吸振器系统有限元模型,采用复特征值分析和瞬时动态分析研究了2种扣件区段钢轨吸振器对钢轨波磨的抑制效果;通过最小二乘法和粒子群算法研究了钢轨吸振器的不同参数对钢轨波磨的影响规律,确定2种扣件下钢轨吸振器的最优参数组合。研究结果表明:安装钢轨吸振器前后,轮对-钢轨-吸振器系统发生摩擦自激振动的主要频率为480 Hz;DTVI2扣件的最大垂向振动加速度由270.01 m·s-2下降到206.07 m·s-2,降低了23.71 %,功率谱密度(PSD)峰值由98.98 dB下降到94.92 dB;科隆蛋扣件的最大垂向振动加速度由300.97 m·s-2下降到211.44 m·s-2,降低了29.74%,PSD峰值由101.58 dB下降到95.14 dB;在DTVI2扣件区段中,钢轨吸振器质量为14.0 kg,连接刚度为9.0×106 N·m-1,连接阻尼为1.0×105 N·s·m-1时对钢轨波磨的抑制效果最好;在科隆蛋扣件区段中,钢轨吸振器质量为7.5 kg,连接刚度为1.07×107 N·m-1,连接阻尼为1.0×105 N·s·m-1时钢轨波磨的抑制效果最好。可见,安装钢轨吸振器能够有效抑制轮轨系统的摩擦自激振动,从而抑制钢轨波磨的产生和发展;钢轨吸振器对科隆蛋扣件区段钢轨波磨的抑制效果优于DTVI2扣件区段;合理选取钢轨吸振器的连接参数会进一步抑制钢轨波磨的产生和发展。

     

  • 图  1  DTVI2扣件小半径曲线区段现场调研

    Figure  1.  Field investigation of small-radius curve section with DTVI2 fastener

    图  2  科隆蛋扣件小半径曲线区段现场调研

    Figure  2.  Field investigation of small-radius curve section with Cologne-egg fastener

    图  3  小半径曲线区段轮对-钢轨-吸振器系统的接触模型

    Figure  3.  Contact model of wheelset-rail-vibration absorber system in small-radius curve section

    图  4  DTVI2扣件小半径曲线区段轮对-钢轨-吸振器系统有限元模型

    Figure  4.  Finite element model of wheelset-rail-vibration absorber system in small-radius curve section with DTVI2 fastener

    图  5  科隆蛋扣件小半径曲线区段轮对-钢轨-吸振器系统有限元模型

    Figure  5.  Finite element model of wheelset-rail-vibration absorber system in small-radius curve section with Cologne-egg fastener

    图  6  安装钢轨吸振器前轮轨系统复特征值实部和模态

    Figure  6.  Complex eigenvalues real parts and modals of wheelset-rail system before installing rail vibration absorbers

    图  7  安装钢轨吸振器后轮轨系统复特征值实部和模态

    Figure  7.  Complex eigenvalues real parts and modals of wheelset-rail system after installing rail vibration absorbers

    图  8  不同扣件下轮对-钢轨-吸振器的瞬态分析有限元模型

    Figure  8.  Finite element model of transient analysis of wheelset-rail-vibration absorber system supported by different fasteners

    图  9  轮对-钢轨-吸振器系统垂向振动加速度

    Figure  9.  Vertical vibration accelerations of wheelset-rail-vibration absorber system

    图  10  垂向振动加速度的PSD分析

    Figure  10.  PSD analysis of vertical vibration acceleration

    图  11  不同扣件下吸振器参数对系统摩擦自激振动影响规律

    Figure  11.  Influence rules of vibration absorber parameters on friction self-excited vibration of system under different fasteners

    图  12  拟合方程的误差分析

    Figure  12.  Error analysis of fitted equations

    图  13  参数优化前后轮对-钢轨-吸振器系统复特征值实部分布

    Figure  13.  Distributions of real part of complex eigenvalue of wheelset-rail-vibration absorber system before and after parameter optimization

    表  1  轮对-钢轨-吸振器系统有限元模型材料参数

    Table  1.   Material parameters of finite element model of wheelset- rail-vibration absorber system

    部件 密度/(kg·m-3) 弹性模量/MPa 泊松比
    轮对 7.8×103 2.06×105 0.3
    钢轨 7.8×103 2.06×105 0.3
    轨枕 2.8×103 1.90×105 0.3
    钢轨吸振器 7.9×103 1.90×105 0.3
    下载: 导出CSV

    表  2  DTVI2扣件轮对-钢轨-吸振器系统的有限元模型连接参数

    Table  2.   Finite element model connection parameters of wheelset- rail-vibration absorber system with DTVI2 fastener

    连接参数 横向 垂向 纵向
    钢轨扣件刚度/(N·m-1) 8.8×106 4.1×107 8.8×106
    钢轨扣件阻尼/(N·s·m-1) 1.9×103 9.9×103 1.9×103
    轨道支撑刚度/(N·m-1) 5.0×107 8.9×107 5.0×107
    轨道支撑阻尼/(N·s·m-1) 4.0×104 8.9×104 4.0×104
    钢轨吸振器刚度/(N·m-1) 1.5×107 3.0×107 1.5×107
    钢轨吸振器阻尼/(N·s·m-1) 2.0×104 4.0×104 2.0×104
    下载: 导出CSV

    表  3  科隆蛋扣件轮对-钢轨-吸振器系统的有限元模型连接参数

    Table  3.   Finite element model connection parameters of wheelset- rail-vibration absorber system with Cologne-egg fastener

    连接参数 横向 垂向 纵向
    钢轨扣件刚度/(N·m-1) 7.6×106 1.2×107 7.6×106
    钢轨扣件阻尼/(N·s·m-1) 1.0×103 1.4×103 1.0×103
    钢轨吸振器刚度/(N·m-1) 1.5×107 3.0×107 1.5×107
    钢轨吸振器阻尼/(N·s·m-1) 2.0×104 4.0×104 2.0×104
    下载: 导出CSV
  • [1] 李伟, 曾全君, 朱士友, 等. 地铁钢轨波磨对车辆和轨道动态行为的影响[J]. 交通运输工程学报, 2015, 15(1): 34-42. doi: 10.19818/j.cnki.1671-1637.2015.01.005

    LI Wei, ZENG Quan-jun, ZHU Shi-you, et al. Effect of metro rail corrugation on dynamic behaviors of vehicle and track[J]. Journal of Traffic and Transportation Engineering, 2015, 15(1): 34-42. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2015.01.005
    [2] 金学松, 李霞, 李伟, 等. 铁路钢轨波浪形磨损研究进展[J]. 西南交通大学学报, 2016, 51(2): 264-273. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201602007.htm

    JIN Xue-song, LI Xia, LI Wei, et al. Review of rail corrugation progress[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 264-273. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201602007.htm
    [3] CHEN G X, ZHOU Z R, QUYANG H, et al. A finite element study on rail corrugation based on saturated creep force-induced self-excited vibration of a wheelset-track system[J]. Journal of Sound and Vibration, 2010, 329(22): 4643-4655. doi: 10.1016/j.jsv.2010.05.011
    [4] WU Bo-wen, CHEN Guang-xiong, LYU Jin-zhou, et al. Generation mechanism and remedy method of rail corrugation at a sharp curved metro track with Vanguard fasteners[J]. Journal of Low Frequency Noise, Vibration, and Active Control, 2020, 39(2): 368-381. doi: 10.1177/1461348419845992
    [5] 陈光雄, 钱韦吉, 莫继良, 等. 轮轨摩擦自激振动引起小半径曲线钢轨波磨的瞬态动力学[J]. 机械工程学报, 2014, 50(9): 71-76. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201409010.htm

    CHEN Guang-xiong, QIAN Wei-ji, MO Ji-liang, et al. A transient dynamics study on wear-type rail corrugation on a tight curve due to the friction-induced self-excited vibration of a wheelset-track system[J]. Journal of Mechanical Engineering, 2014, 50(9): 71-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201409010.htm
    [6] 尧辉明, 沈钢, 高利君. 基于试验验证的磨耗型钢轨波磨形成机理[J]. 同济大学学报(自然科学版), 2018, 46(10): 1427-1432. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201810016.htm

    YAO Hui-ming, SHEN Gang, GAO Li-jun. Formation mechanism of worn profile rail corrugation based on experimental verification[J]. Journal of Tongji University (Natural Science), 2018, 46(10): 1427-1432. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201810016.htm
    [7] JIN Xue-song, WEN Ze-feng, ZHANG Wei-hua, et al. Numerical simulation of rail corrugation on a curved track[J]. Computers and Structures, 2005, 83(25/26): 2052-2065.
    [8] 尚文军. 钢轨吸振器对地铁钢轨波磨抑制作用的研究[J]. 现代城市轨道交通, 2015(3): 57-61. https://www.cnki.com.cn/Article/CJFDTOTAL-XDGD201503019.htm

    SHANG Wen-jun. Study of metro rail vibration absorber to reduce rail corrugation[J]. Modern Urban Transit, 2015(3): 57-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDGD201503019.htm
    [9] 钱韦吉, 黄志强. 蠕滑力饱和条件下钢轨吸振器抑制短波波磨的理论研究[J]. 振动与冲击, 2019, 38(14): 68-73, 111. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201914010.htm

    QIAN Wei-ji, HUANG Zhi-qiang. Theoretical study on the suppression of short pitch rail corrugation induced vibration by rail vibration absorbers under saturated creep forces condition[J]. Journal of Vibration and Shock, 2019, 38(14): 68-73, 111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201914010.htm
    [10] 邹钰, 文永蓬, 纪忠辉, 等. 车轨耦合下钢轨复合吸振器的减振方法[J]. 振动、测试与诊断, 2021, 41(5): 888-896, 1031. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS202105009.htm

    ZOU Yu, WEN Yong-peng, JI Zhong-hui, et al. Vibration reduction method of rail composite shock absorber with vehicle-track coupling[J]. Journal of Vibration, Measurement and Diagnosis, 2021, 41(5): 888-896, 1031. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS202105009.htm
    [11] WU Tian-xing. On the railway track dynamics with rail vibration absorber for noise reduction[J]. Journal of Sound and Vibration, 2008, 309(3/4/5): 739-755.
    [12] 孙晓静, 张厚贵, 刘维宁, 等. 调频式钢轨阻尼器对剪切型减振器轨道动力特性的影响[J]. 振动与冲击, 2016, 35(14): 209-214. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201614034.htm

    SUN Xiao-jing, ZHANG Hou-gui, LIU Wei-ning, et al. Effect of tuning rail damper on dynamic properties of the track structure using Egg fastening system[J]. Journal of Vibration and Shock, 2016, 35(14): 209-214. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201614034.htm
    [13] THOMPSON D J, JONES C J C, WATERS T P, et al. A tuned damping device for reducing noise from railway track[J]. Applied Acoustics, 2007, 68(1): 43-57. doi: 10.1016/j.apacoust.2006.05.001
    [14] TAO Tian-you, WANG Hao, YAO Cheng-yuan, et al. Parametric sensitivity analysis on the buffeting control of a long-span triple-tower suspension bridge with MTMD[J]. Applied Sciences, 2017, 7(4): 395. doi: 10.3390/app7040395
    [15] ZHAO Cai-you, WANG Ping, SHENG Xi, et al. Theoretical simulation and experimental investigation of a rail damper to minimize short-pitch rail corrugation[J]. Mathematical Problems in Engineering, 2017, 2017: 2359404.
    [16] BELLETTE P A, MEEHAN P A, DANIEL W J T. Effects of variable pass speed on wear-type corrugation growth[J]. Journal of Sound and Vibration, 2008, 314(3/4/5): 616-634.
    [17] 关庆华, 张斌, 熊嘉阳, 等. 地铁钢轨波磨的基本特征、形成机理和治理措施综述[J]. 交通运输工程学报, 2021, 21(1): 316-337. doi: 10.19818/j.cnki.1671-1637.2021.01.015

    GUAN Qing-hua, ZHANG Bin, XIONG Jia-yang, et al. Review on basic characteristics, formation mechanisms, and treatment measures of rail corrugation in metro systems[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 316-337. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.01.015
    [18] CETTOUR-JANET R, BARBARULO A, LETOURNEAUX F, et al. An Arnoldi reduction strategy applied to the semi-analytical finite element method to model railway track vibrations[J]. Mechanical Systems and Signal Processing, 2019, 116: 997-1016. doi: 10.1016/j.ymssp.2018.07.013
    [19] 田彩. 一种共振原理钢轨降噪结构的减振降噪特性分析[D]. 成都: 西南交通大学, 2019.

    TIAN Cai. Analysis of vibration and noise reduction characteristics of rail noise reduction structure based on resonance principle[D]. Chengdu: Southwest Jiaotong University, 2019. (in Chinese)
    [20] 杨新文, 赵治钧, 钱鼎玮, 等. 钢轨底部动力吸振器对钢轨振动与噪声的影响[J]. 哈尔滨工业大学学报, 2021, 53(3): 42-50. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202103006.htm

    YANG Xin-wen, ZHAO Zhi-jun, QIAN Ding-wei, et al. Influence of dynamic vibration absorber beneath rail base on rail vibration and noise[J]. Journal of Harbin Institute of Technology, 2021, 53(3): 42-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202103006.htm
    [21] 崔晓璐, 陈光雄, 杨宏光. 轮对结构和扣件刚度对钢轨波磨的影响[J]. 西南交通大学学报, 2017, 52(1): 112-117. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201701016.htm

    CUI Xiao-lu, CHEN Guang-xiong, YANG Hong-guang. Influence of wheelset structure and fastener stiffness on rail corrugation[J]. Journal of Southwest Jiaotong University, 2017, 52(1): 112-117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201701016.htm
    [22] 崔晓璐, 钱韦吉, 张青, 等. 直线线路科隆蛋扣件地段钢轨波磨成因的理论研究[J]. 振动与冲击, 2016, 35(13): 114-118, 152. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201613019.htm

    CUI Xiao-lu, QIAN Wei-ji, ZHANG Qing, et al. Forming mechanism of rail corrugation of a straight track section supported by Cologne-egg fasteners[J]. Journal of Vibration and Shock, 2016, 35(13): 114-118, 152. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201613019.htm
    [23] ABUBAKAR A R, OUYANG H J. Complex eigenvalue analysis and dynamic transient analysis in predicting disc brake squeal[J]. International Journal of Vehicle Noise and Vibration, 2006, 2(2): 143. doi: 10.1504/IJVNV.2006.011051
    [24] OUYANG H J, NACK W, YUAN Y B, et al. Numerical analysis of automotive disc brake squeal: a review[J]. International Journal of Vehicle Noise and Vibration, 2005, 1(3/4): 207. doi: 10.1504/IJVNV.2005.007524
    [25] EL BESHBICHI O, WAN C, BRUNI S, et al. Complex eigenvalue analysis and parameters analysis to investigate the formation of railhead corrugation in sharp curves[J]. Wear, 2020, 450/451: 203150. doi: 10.1016/j.wear.2019.203150
    [26] 许洋, 赵新利, 徐涆文, 等. 钢轨动力吸振器减振降噪特性分析[J]. 噪声与振动控制, 2021, 41(2): 219-224. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK202102038.htm

    XU Yang, ZHAO Xin-li, XU Han-wen, et al. Analysis of vibration and noise reduction characteristics of rail vibration absorbers[J]. Noise and Vibration Control, 2021, 41(2): 219-224. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK202102038.htm
    [27] 崔晓璐, 吕东, 李童, 等. 山地地铁浮置板轨道支撑结构钢轨波磨机制研究[J]. 润滑与密封, 2022, 47(6): 52-58. https://www.cnki.com.cn/Article/CJFDTOTAL-RHMF202206007.htm

    CUI Xiao-lu, LYU Dong, LI Tong, et al. Study on rail corrugation mechanism of floating slab track support structure in mountain metro[J]. Lubrication Engineering, 2022, 47(6): 52-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RHMF202206007.htm
    [28] CARRIGAN T D, TALBOT J P. A new method to derive rail roughness from axle-box vibration accounting for track stiffness variations and wheel-to-wheel coupling[J]. Mechanical Systems and Signal Processing, 2023, 192: 110232. doi: 10.1016/j.ymssp.2023.110232
    [29] XU J, CUI X L, DING H H, et al. Optimization of vibration absorbers for the suppression of rail corrugation in the sharp curved section with Cologne-egg fasteners[J]. Vehicle System Dynamics, 2024, 62(2): 395-410. doi: 10.1080/00423114.2023.2170255
    [30] 文永蓬, 纪忠辉, 翁琳, 等. 双重钢轨吸振器对轨道系统的振动抑制研究[J]. 机械工程学报, 2020, 56(12): 184-195. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202012023.htm

    WEN Yong-peng, JI Zhong-hui, WENG Lin, et al. Study on vibration suppression of track system via double rail vibration absorber[J]. Journal of Mechanical Engineering, 2020, 56(12): 184-195. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202012023.htm
    [31] 陈彦恒, 谢小山. 钢轨动力吸振器对地铁车轨振动的影响分析[J]. 铁道标准设计, 2017, 61(8): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201708008.htm

    CHEN Yan-heng, XIE Xiao-shan. Influence of dynamic vibration absorber for rail on vehicle-track vibrations[J]. Railway Standard Design, 2017, 61(8): 37-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201708008.htm
    [32] 赵悦, 肖新标, 韩健, 等. 高速有砟轨道钢轨动力吸振器垂向吸振特性及其参数影响[J]. 机械工程学报, 2013, 49(16): 17-25. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201316004.htm

    ZHAO Yue, XIAO Xin-biao, HAN Jian, et al. Vertical characteristic and its parameter effect of rail vibration absorber used in high-speed ballasted track[J]. Journal of Mechanical Engineering, 2013, 49(16): 17-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201316004.htm
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  33
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-13
  • 网络出版日期:  2024-07-18
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回