留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矩形截面型钢超高性能混凝土梁短期刚度计算方法

林上顺 暨邦冲 刘君平 林建凡 赵锦冰

林上顺, 暨邦冲, 刘君平, 林建凡, 赵锦冰. 矩形截面型钢超高性能混凝土梁短期刚度计算方法[J]. 交通运输工程学报, 2024, 24(6): 92-105. doi: 10.19818/j.cnki.1671-1637.2024.06.006
引用本文: 林上顺, 暨邦冲, 刘君平, 林建凡, 赵锦冰. 矩形截面型钢超高性能混凝土梁短期刚度计算方法[J]. 交通运输工程学报, 2024, 24(6): 92-105. doi: 10.19818/j.cnki.1671-1637.2024.06.006
LIN Shang-shun, JI Bang-chong, LIU Jun-ping, LIN Jian-fan, ZHAO Jin-bing. Calculation method of instantaneous stiffness of steel reinforced ultra-high performance concrete beams with rectangular section[J]. Journal of Traffic and Transportation Engineering, 2024, 24(6): 92-105. doi: 10.19818/j.cnki.1671-1637.2024.06.006
Citation: LIN Shang-shun, JI Bang-chong, LIU Jun-ping, LIN Jian-fan, ZHAO Jin-bing. Calculation method of instantaneous stiffness of steel reinforced ultra-high performance concrete beams with rectangular section[J]. Journal of Traffic and Transportation Engineering, 2024, 24(6): 92-105. doi: 10.19818/j.cnki.1671-1637.2024.06.006

矩形截面型钢超高性能混凝土梁短期刚度计算方法

doi: 10.19818/j.cnki.1671-1637.2024.06.006
基金项目: 

国家自然科学基金项目 52078136

福建省交通运输科技项目 202024

详细信息
    作者简介:

    林上顺(1972-),男,福建永泰人,福建理工大学教授,工学博士,从事桥梁结构设计理论、预制拼装桥梁与组合结构桥梁研究

    通讯作者:

    暨邦冲(1995-),男,福建武夷山人,河海大学工学博士研究生

  • 中图分类号: U443.3

Calculation method of instantaneous stiffness of steel reinforced ultra-high performance concrete beams with rectangular section

Funds: 

National Natural Science Foundation of China 52078136

Traffic Science and Technology Project of Fujian Province 202024

More Information
  • 摘要: 为研究矩形截面型钢超高性能混凝土(简称SRUHPC)梁的短期刚度及其计算方法,制作了5根矩形截面SRUHPC梁试件与1根钢筋超高性能混凝土(简称钢筋UHPC)梁试件,试件的配筋率范围为0.8%~1.1%,内置的型钢形状分别为一字型、倒T型、H型,含钢率范围为8.7%~15.6%;开展抗弯试验,分析了矩形截面SRUHPC梁试件与钢筋UHPC梁试件的变形规律,以及设计参数变化对矩形截面SRUHPC梁试件刚度的影响;根据试验结果,基于刚度解析法,提出矩形截面SRUHPC梁短期刚度简化计算方法,计算了13根矩形截面SRUHPC梁试件(含8根文献试件)在正常使用荷载下的最大挠度,并比较了计算结果与试验值。分析结果表明:与钢筋UHPC梁试件相比,在相同荷载作用下,矩形截面SRUHPC梁试件的挠度降低16%~72%,且其刚度不会因截面开裂而明显下降,减小7%以内;与纵向受拉钢筋较为相似,受拉侧型钢可在矩形截面SRUHPC梁试件承载时承担一定的拉力,从而抑制梁的裂缝开展,并减小因截面开裂而损失的刚度;采用提出的短期刚度计算方法得到的挠度公式计算值与试验值吻合较好,比值均值为1.041,比值方差为0.017,且计算精度高于现有文献的计算方法。

     

  • 图  1  试件钢筋布置(单位:mm)

    Figure  1.  Arrangement of steel bars of specimen (unit: mm)

    图  2  试件横截面(单位:mm)

    Figure  2.  Cross sections of specimens (unit: mm)

    图  3  钢筋骨架与型钢的焊接

    Figure  3.  Welding of bar frame to structural steel

    图  4  加载装置

    Figure  4.  Loading device

    图  5  应变片布置

    Figure  5.  Strain gauges arrangement

    图  6  试件的典型破坏模式

    Figure  6.  Typical failure patterns of specimens

    图  7  荷载-挠度曲线

    Figure  7.  Load-displacement curves

    图  8  跨中沿高度方向的型钢应变分布

    Figure  8.  Mid-span strain distributions of structural steels in vertical direction

    图  9  跨中沿高度方向的UHPC应变分布

    Figure  9.  Mid-span strain distributions of UHPC in vertical direction

    图  10  跨中荷载-应变曲线

    Figure  10.  Mid-span load-strain curves

    图  11  裂缝分布

    Figure  11.  Crack distributions

    图  12  SRUHPC梁截面

    Figure  12.  SRUHPC beam section

    图  13  不同计算方法的计算值与试验值比较

    Figure  13.  Comparison of calculated values by different calculation methods and experimental values

    图  14  曲率计算示意图

    Figure  14.  Curvature calculation schematic

    图  15  使用荷载下正截面应力与应变分布

    Figure  15.  Stress and strain distributions of normal section under service load

    图  16  kss回归方程计算值与试验数据计算值对比

    Figure  16.  Comparison of kss values calculated by regression equation and test data

    图  17  一字型型钢等效下翼缘

    Figure  17.  Equivalent lower flange of Ⅰ-type structural steel

    图  18  本文方法计算值与试验值比较

    Figure  18.  Comparison of calculated values by this paper method and tested values

    表  1  挠度与荷载比较

    Table  1.   Comparison of deflections and loads

    荷载/kN RU SU SU-P SU-T SU-LF SU-DF
    P250 350.0 316.3 371.7 383.3 465.8
    P300 152.8 326.7 302.9 350.8 331.7 439.3
    P600 106.7 186.7 188.3 211.1 182.2 292.4
    下载: 导出CSV

    表  2  试件参数

    Table  2.   Specimen parameters

    试件编号 截面尺寸/mm 计算跨径/mm 型钢尺寸/mm 型钢位置 含钢率/% 受拉纵筋 Es/GPa Ea/GPa Ec/GPa
    L1 150×250 1 600 150×75×6×8 居中 4.7 2Φ14 200 200 39
    L2 2Φ16
    L3 2Φ18
    L4 下偏20 mm 2Φ14
    L5 150×60×6×6 居中 4.1
    L6 150×75×6×8 5.3
    L7 150×60×6×8 下偏20 mm 4.7
    L8 150×75×6×8 居中 5.3
    下载: 导出CSV
  • [1] IKEDA M. Transition and future prospects of research and development of railway steel-concrete hybrid structures[J]. Journal of Japan Society of Civil Engineers, Ser A1 (Structural Engineering and Earthquake Engineering), 2022, 78(5): 1-18.
    [2] IKEDA M. The trend of new technologies on SRC and CFT members in railway structures[J]. Concrete Journal, 2014, 52(1): 102-107. doi: 10.3151/coj.52.102
    [3] HONG W K, PARK S C, LEE H C, et al. Composite beam composed of steel and precast concrete (modularized hybrid system). Part Ⅲ: application for a 19-storey building[J]. The Structural Design of Tall and Special Buildings, 2010, 19(6): 679-706. doi: 10.1002/tal.507
    [4] HONG W K, KIM J M, PARK S C, et al. Composite beam composed of steel and pre-cast concrete. (modularized hybrid system, MHS) Part Ⅱ: analytical investigation[J]. The Structural Design of Tall and Special Buildings, 2009, 18(8): 891-905. doi: 10.1002/tal.484
    [5] TONG Le-wei, LIU Bo, XIAN Qing-jun, et al. Experimental study on fatigue behavior of steel reinforced concrete (SRC) beams[J]. Engineering Structures, 2016, 123: 247-262. doi: 10.1016/j.engstruct.2016.05.052
    [6] 王朝霞. 型钢混凝土梁裂缝和变形的研究[D]. 西安: 西安建筑科技大学, 2006.

    WANG Zhao-xia. Study on cracks and deformation of steel reinforced concrete beams[D]. Xi'an: Xi'an University of Architecture and Technology, 2006. (in Chinese)
    [7] 赵世春, 施建平. 型钢混凝土梁受弯刚度计算[J]. 西南交通大学学报, 2004, 39(6): 730-733. doi: 10.3969/j.issn.0258-2724.2004.06.007

    ZHAO Shi-chun, SHI Jian-ping. Computation of flexural rigidity of steel reinforced concrete beam[J]. Journal of Southwest Jiaotong University, 2004, 39(6): 730-733. (in Chinese) doi: 10.3969/j.issn.0258-2724.2004.06.007
    [8] 黄宛昆, 吴庆雄, 王渠. 装配式空心板桥改进型铰缝结合面受力性能[J]. 交通运输工程学报, 2022, 22(6): 169-181. doi: 10.19818/j.cnki.1671-1637.2022.06.011

    HUANG Wan-kun, WU Qing-xiong, WANG Qu. Mechanical property of improved hinge joint junction surface in prefabricated voided slab bridge[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 169-181. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.06.011
    [9] 陈宝春, 李聪, 黄伟, 等. 超高性能混凝土收缩综述[J]. 交通运输工程学报, 2018, 18(1): 13-28. doi: 10.3969/j.issn.1671-1637.2018.01.002

    CHEN Bao-chun, LI Cong, HUANG Wei, et al. Review of ultra-high performance concrete shrinkage[J]. Journal of Traffic and Transportation Engineering, 2018, 18(1): 13-28. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.01.002
    [10] FAN Z T, HUANG W, NEGOITA A. Repairing steel girder end corrosion using ultra-high performance concrete[J]. Journal of Bridge Engineering, 2022, 27(1): 05021015. doi: 10.1061/(ASCE)BE.1943-5592.0001809
    [11] 李聪, 陈宝春, 韦建刚. 粗集料UHPC收缩与力学性能[J]. 交通运输工程学报, 2019, 19(5): 11-20. doi: 10.3969/j.issn.1671-1637.2019.05.003

    LI Cong, CHEN Bao-chun, WEI Jian-gang. Shrinkage and mechanical properties of UHPC with coarse aggregate[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 11-20. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.05.003
    [12] MCMULLEN K F, ZAGHI A E. An accelerated repair method for steel girders with severe end corrosion damage[J]. Engineering Structures, 2022, 251: 113493. doi: 10.1016/j.engstruct.2021.113493
    [13] 陈宝春, 季韬, 黄卿维, 等. 超高性能混凝土研究综述[J]. 建筑科学与工程学报, 2014, 31(3): 1-24. doi: 10.3969/j.issn.1673-2049.2014.03.002

    CHEN Bao-chun, JI Tao, HUANG Qin-wei, et al. Review of research on ultra-high performance concrete[J]. Journal of Architecture and Civil Engineering, 2014, 31(3): 1-24. (in Chinese) doi: 10.3969/j.issn.1673-2049.2014.03.002
    [14] WILLE K, NAAMAN A E, PARRA-MONTESINOS G J. Ultra-high performance concrete with compressive strength exceeding 150 MPa (22 ksi): a simpler way[J]. ACI Materials Journal, 2011, 108(1): 46-54. http://dialnet.unirioja.es/servlet/articulo?codigo=3416988
    [15] CWIRZEN A, PENTTALA V, VORNANEN C. Reactive powder based concretes: mechanical properties, durability and hybrid use with OPC[J]. Cement and Concrete Research, 2008, 38(10): 1217-1226. doi: 10.1016/j.cemconres.2008.03.013
    [16] 夏樟华, 暨邦冲, 杨阳, 等. 预应力RC-UHPC组合箱梁的受弯性能[J/OL]. 土木与环境工程学报(中英文), 2023, http://kns.cnki.net/kcms/detail/50.1218.TU.20230911.1055.004.html.

    XIA Zhang-hua, JI Bang-chong, YANG yang, et al. Flexural performance of prestressed RC-UHPC composite box girder[J/OL]. Journal of Civil and Environmental Engineering, 2023, http://kns.cnki.net/kcms/detail/50.1218.TU.20230911.1055.004.html. (in Chinese)
    [17] 林上顺, 暨邦冲, 刘君平, 等. 矩形截面型钢超高性能混凝土梁抗弯承载力[J]. 交通运输工程学报, 2024, 24(3): 94-109. doi: 10.19818/j.cnki.1671-1637.2024.03.006

    LIN Shang-shun, JI Bang-chong, LIU Jun-ping, et al. Flexural capacity of steel reinforced ultra-high performance concrete beams with rectangular section[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 94-109. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2024.03.006
    [18] 翟建恺. 型钢活性粉末混凝土梁正截面受弯承载力试验与分析[D]. 扬州: 扬州大学, 2020.

    ZHAI Jian-kai. Test and analysis of flexural bearing capacity of normal section of steel reactive powder concrete beam[D]. Yangzhou: Yangzhou University, 2020. (in Chinese)
    [19] 卜良桃, 刘鼎. 通过外包活性粉末混凝土型钢梁抗弯性能试验研究[J]. 铁道科学与工程学报, 2018, 15(2): 389-397. doi: 10.3969/j.issn.1672-7029.2018.02.016

    BU Liang-tao, LIU Ding. Experimental study on prestressed steel reinforced high-strength wrapped by reactive power concrete beams[J]. Journal of Railway Science and Engineering, 2018, 15(2): 389-397. (in Chinese) doi: 10.3969/j.issn.1672-7029.2018.02.016
    [20] 唐长久. 超高性能混凝土型钢梁受弯性能试验研究[D]. 长沙: 湖南大学, 2020.

    TANG Chang-jiu. Experimental research on the flexural performance of ultra-high performance concrete beam[D]. Changsha: Hunan University, 2020. (in Chinese)
    [21] 卜良桃, 罗恺彦. 型钢外包活性粉末混凝土(RPC)的界面黏结性能[J]. 科学技术与工程, 2018, 18(3): 307-312. doi: 10.3969/j.issn.1671-1815.2018.03.050

    BU Liang-tao, LUO Kai-yan. Interface bonding performance between shape steel and reactive power concrete (RPC) in steel reinforced RPC structures[J]. Science Technology and Engineering, 2018, 18(3): 307-312. (in Chinese) doi: 10.3969/j.issn.1671-1815.2018.03.050
    [22] 张冰杰. 型钢与外包钢纤维活性粉末混凝土的界面粘结性能试验研究[D]. 济南: 山东建筑大学, 2022.

    ZHANG Bing-jie. Experimental study on bond-slip behavior of steel reinforced reactive powder concrete[D]. Jinan: Shandong Jianzhu University, 2022.
    [23] 仲振鹏. 型钢活性粉末混凝土粘结滑移性能试验研究[D]. 扬州: 扬州大学, 2021.

    ZHONG Zhen-peng. Experimental study on bond slip behavior of shaped steel reactive powder concrete[D]. Yangzhou: Yangzhou University, 2021.
    [24] 叶佳方. 型钢RPC简支梁刚度及裂缝宽度计算方法研究[D]. 扬州: 扬州大学, 2021.

    YE Jia-fang. Study on calculation method of rigidity and crackwidth of steel section RPC simply supported beam[D]. Yangzhou: Yangzhou University, 2021. (in Chinese)
    [25] 徐明雪, 梁兴文, 于婧, 等. UHPC梁短期刚度理论与试验研究[J]. 工程力学, 2019, 36(1): 146-154, 164.

    XU Ming-xue, LIANG Xing-wen, YU Jing, et al. Theoretical and experimental investigation on immediate stiffness of UHPC beams[J]. Engineering Mechanics, 2019, 36(1): 146-154, 164. (in Chinese)
    [26] 李莉. 活性粉末混凝土梁受力性能及设计方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.

    LI Li. Mechanical behavior and design method for reactive powder concrete beams[D]. Harbin: Harbin Institute of Technology, 2010. (in Chinese)
    [27] 吴琛, 陈柯丹, 林上顺, 等. 免蒸养超高性能混凝土力学性能的试验[J]. 工业建筑, 2021, 51(1): 140-145.

    WU Chen, CHEN Ke-dan, LIN Shang-shun, et al. Experimental study on mechanical properties of ultra-high performance concrete under normal temperature curing[J]. Industrial Construction, 2021, 51(1): 140-145. (in Chinese)
    [28] 叶列平, 方鄂华. 钢骨混凝土构件的受力性能研究综述[J]. 土木工程学报, 2000, 33(5): 1-12. doi: 10.3321/j.issn:1000-131X.2000.05.001

    YE Lie-ping, FANG E-hua. State-of-the-art of study on the behaviors of steel reinforced concrete structure[J]. China Civil Engineering Journal, 2000, 33(5): 1-12. (in Chinese) doi: 10.3321/j.issn:1000-131X.2000.05.001
    [29] 李志武, 许金余, 张国喜, 等. 利用纤维增强机理对纤维临界体积率的理论推导[C]//中国土木工程学会. 第十三届纤维混凝土学术会议暨第二届海峡两岸三地混凝土技术研讨会. 南京: 东南大学出版社, 2010: 522-528.

    LI Zhi-wu, XU Jin-yu, ZHANG Guo-xi, et al. The theoretical deduction of the critical fiber volume quantity using the mechanism of fiber reinforced concrete[C]//Civil Engineering Institute of China. Seminar on Concrete Technology in Three Places Across the Taiwanstraits. Nanjing: Southeast University Press, 2010: 522-528. (in Chinese)
    [30] ALI H M, ALAMIR J S A, HAMAD N T. First diagonal cracking and ultimate shear of reactive powder concrete T-beams without stirrups[J]. Journal of Engineering and Development, 2014, 18(5): 149-164. http://www.iasj.net/iasj?func=article&aId=92987
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  137
  • HTML全文浏览量:  59
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-18
  • 刊出日期:  2024-12-25

目录

    /

    返回文章
    返回