Influence of dynamic vehicle shadows on power generation efficiency of highway photovoltaic pavements
-
摘要: 为研究路面车辆阴影对公路光伏路面(HPVP)发电效率的影响,通过构造36.00 m×3.20 m的理想光伏路面模型(4×12阵列),建立了包含电池组件参数、路面参数、环境参数、车辆参数和交通参数的光伏路面发电模型;通过理论仿真,研究了太阳高度角、车辆构成、行驶速度、车流量等因素对HPVP发电效率的影响规律;通过搭建的HPVP测试平台,研究串联、并联光伏电池板组成的4×2光伏阵列阴影遮挡试验,验证光伏阵列模型和阴影遮挡模型的准确性。研究结果表明:在构造条件下,车辆行驶时的光伏路面输出功率呈现周期性波动;针对光伏路面发电效率,大型车造成的阴影遮挡不受太阳高度角影响,而小型车造成的阴影遮挡受太阳高度角影响明显;对小型车阴影遮挡影响,太阳高度角临界值为65°,当高度角大于65°时,光伏路面发电效率随着高度角的增大而增大,当高度角小于65°时,光伏路面输出功率不随高度角的变化而变化;行驶速度越快,动态阴影遮挡时间越短,光伏路面发电损失越小,当行驶速度超过70 km·h-1后,行驶速度增加对降低发电损失效果减缓;车流量增加会导致HPVP发电损失缓慢增加,且车流量对光伏路面发电效率的影响大于车辆行驶速度的影响;极限条件下,大型车和小型车对光伏路面造成的发电最大损失分别为26.82%和11.37%;通过验证试验发现,阴影的纵向遮挡和横向遮挡下光伏路面最大发电效率仿真值的一致性分别为98.63%和98.27%。Abstract: To investigate the impacts of vehicle shadows on the power generation efficiency of highway photovoltaic pavement (HPVP), a 36.00 m×3.20 m ideal photovoltaic pavement model (4×12 array) was constructed. Based on this, a photovoltaic pavement power generation model including parameters of battery component, pavement, environment, vehicle, and traffic was established. Subsequently, theoretical simulations were employed to examine the effects of solar elevation angle, vehicle composition, driving speed, traffic flow, and other factors on the power generation efficiency of HPVP. Finally, through the established HPVP test platform, the shadow occlusion experiment of a 4×2 photovoltaic array consisting of series and parallel photovoltaic panels was analyzed to validate the accuracy of the photovoltaic array model and shadow occlusion model. The results indicate that under the hypothesized conditions in this paper, the output power of the photovoltaic pavement exhibits periodic fluctuations as vehicles pass over it. In terms of photovoltaic pavement power generation efficiency, the shadow occlusion from large vehicles is independent of the solar elevation angle, whereas the one from small vehicles is significantly influenced by it. Regarding the impact of small vehicles' shadow occlusion, the critical solar elevation angle is 65°. When the elevation angle exceeds 65°, the power generation efficiency of the photovoltaic pavement increases with the rise in solar elevation angle. When the elevation angle is below 65°, the output power of the photovoltaic pavement remains unchanged, regardless of variations in the elevation angle. Faster driving speeds lead to shorter durations of dynamic shadow occlusion and, consequently, less power generation loss for the photovoltaic pavement. When driving speed surpasses 70 km·h-1, the influence of further speed increase on reducing power generation loss diminishes. An increase in traffic flow results in a gradual rise in power generation loss, and the influence of traffic flow on the power generation efficiency of photovoltaic pavement is more pronounced than that of driving speed. Under extreme conditions, the maximum power generation losses of photovoltaic pavement caused by large- and small-size vehicles are 26.82% and 11.37%, respectively. Through verification tests, it is found that the simulation value consistency of the maximum power generation efficiency of the photovoltaic pavement under longitudinal and transverse shadow occlusion is 98.63% and 98.27%, respectively.
-
表 1 车辆模型基本信息
Table 1. Basic information of vehicle model
车辆类型 长度/m 宽度/m 高度/m 正午平均交通量/(veh·h-1) 阴影遮挡宽度/m 正下方遮挡面/m2 大型车(30 t厢式货车) 12.5 2.4 2.7 20 2.4 30.0 小型货车 4.8 1.8 1.5 82 1.8 8.6 表 2 车流量与行驶速度影响对比
Table 2. Influence comparison of traffic flow and driving speed
行驶速度/(km·h-1) 车流量/(veh·h-1) 300 600 900 1200 60 + + + + 70 + + + + 80 + + + + 90 + + + 0 100 + + + - 110 + + + - 120 + + + - -
[1] LI S, MA T, WANG D. Photovoltaic pavement and solar road: a review and perspectives[J]. Sustainable Energy Technologies and Assessments, 2023, 55: 102933. [2] HU H W, VIZZARI D, ZHA X D, et al. Solar pavements: a critical review[J]. Renewable and Sustainable Energy Reviews, 2021, 152: 111712. [3] 王海成, 金娇, 刘帅, 等. 环境友好型绿色道路研究进展与展望[J]. 中南大学学报(自然科学版), 2021, 52(7): 2137-2169.WANG Hai-cheng, JIN Jiao, LIU Shuai, et al. Research progress and prospect of environment-friendly green road[J]. Journal of Central South University (Science and Technology), 2021, 52(7): 2137-2169. [4] 张宇飞, 蒋玮, 张硕, 等. 面向交通与能源融合需求的高速公路设施用能负荷预测[J]. 交通运输工程学报, 2024, 24(5): 40-53. doi: 10.19818/j.cnki.1671-1637.2024.05.004ZHANG Yu-fei, JIANG Wei, ZHANG Shuo, WANG Teng, XIAO Jing-jing, YUAN Dong-dong. Energy load forecasting of highway facilities in response to integration transportation and energy needs[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 40-53. doi: 10.19818/j.cnki.1671-1637.2024.05.004 [5] 刘状壮, 黎耀诚, 王峰, 等. 公路路侧光伏的边坡效应及其风荷载计算方法[J]. 交通运输工程学报, 2024, 24(5): 1-11. doi: 10.19818/j.cnki.1671-1637.2024.05.001LIU Zhuang-zhuang, LI Yao-cheng, WANG Feng, SHA Ai-min. Slope effects on highway-side photovoltaics and its wind load calculation method[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 1-11. doi: 10.19818/j.cnki.1671-1637.2024.05.001 [6] HU M, SONG X, BAO Z, et al. Evaluation of the economic potential of photovoltaic power generation in road spaces[J]. Energies, 2022, 15(17): 6408. [7] 胡恒武, 查旭东, 吕瑞东, 等. 基于光伏发电的道路能量收集技术研究进展[J]. 材料导报, 2022, 36(20): 133-144.HU Heng-wu, ZHA Xu-dong, LYU Rui-dong, et al. Recent advances of energy harvesting technologies in road based on photovoltaic power generation[J]. Materials Reports, 2022, 36(20): 133-144 [8] JIANG W, WANG T, YUAN D D, et al. Available solar resources and photovoltaic system planning strategy for highway[J]. Renewable and Sustainable Energy Reviews, 2024, 203: 114765. [9] ZHOU B C, PEI J Z, NASIR D M, et al. A review on solar pavement and photovoltaic/thermal (PV/T) system[J]. Transportation Research Part D: Transport and Environment, 2021, 93: 102753. [10] DEZFOOLI A S, NEJAD F M, ZAKERI H, et al. Solar pavement: a new emerging technology[J]. Solar Energy, 2017, 149: 272-284. [11] RAHMAN M, MABROUK G, DESSOUKY S. Development of a photovoltaic-based module for harvesting solar energy from pavement: a lab and field assessment[J]. Energies, 2023, 16(8): 3338. [12] 王飚, 路捷, 沙爱民, 等. 考虑光伏不确定性影响的高速公路光储换一体化能源管理策略[J]. 交通运输工程学报, 2024, 24(4): 14-30.WANG Biao, LU Jie, SHA Ai-min, JIANG Wei, LIU Zhuang-zhuang, KE Ji. Energy management strategy of integrated photovoltaic-storage-swapping on highways considering influence of photovoltaic uncertainty[J]. Journal of Traffic and Transportation Engineering, 2024, 24(4): 14-30. [13] LV R D, ZHA X D, HU H W, et al. A review on the influencing factors of solar pavement power generation efficiency[J]. Applied Energy, 2025, 379: 124897. [14] ZHOU B C, PEI J Z, CALAUTIT J K, et al. Analysis of mechanical response and energy efficiency of a pavement integrated photovoltaic/thermal system (PIPVT)[J]. Renewable Energy, 2022, 194: 1-12. [15] TAHA H. The potential for air-temperature impact from large-scale deployment of solar photovoltaic arrays in urban areas[J]. Solar Energy, 2013, 91: 358-367. [16] EFTHYMIOU C, SANTAMOURIS M, KOLOKOTSA D, et al. Development and testing of photovoltaic pavement for heat island mitigation[J]. Solar Energy, 2016, 130: 148-160. [17] XIE P Y, WANG H. Potential benefit of photovoltaic pavement for mitigation of urban heat island effect[J]. Applied Thermal Engineering, 2021, 191: 116883. [18] DEL SERRONE G, PELUSO P, MORETTI L. Photovoltaic road pavements as a strategy for low-carbon urban infrastructures[J]. Heliyon, 2023, 9(9): e19977. [19] ZHA X D, QIU M X, HU H W, et al. Simulation of structure and power generation for self-compacting concrete hollow slab solar pavement with micro photovoltaic array[J]. Sustainable Energy Technologies and Assessments, 2022, 53: 102798. [20] 韩振强, 兰晨睿, 胡力群, 等. 公路路域太阳能资源开发潜力分层评估方法[J]. 长安大学学报(自然科学版), 2024, 44(5): 57-70.HAN Zhen-qiang, LAN Chen-rui, HU Li-qun, et al. Analytic hierarchy process evaluation method of development potential of solar energy resources in highway areas[J]. Journal of Chang'an University (Natural Science Edition), 2024, 44(5): 57-70. [21] ZHOU B C, PEI J Z, HUGHES B R, et al. Analysis of mechanical properties for two different structures of photovoltaic pavement unit block[J]. Construction and Building Materials, 2020, 239: 117864. [22] ZHOU B C, PEI J Z, ZHANG J P, et al. Joint design and load transfer capacity analysis of photovoltaic/thermal integrated pavement unit[J]. Journal of Cleaner Production, 2022, 380: 135029. [23] VIZZARI D, CHAILLEUX E, LAVAUD S, et al. Fraction factorial design of a novel semi-transparent layer for applications on solar roads[J]. Infrastructures, 2020, 5(1): 5. [24] HU H W, ZHA X D, NIU C, et al. Structural optimization and performance testing of concentrated photovoltaic panels for pavement[J]. Applied Energy, 2024, 356: 122362. [25] FOUAD M M, SHIHATA L A, MORGAN E I. An integrated review of factors influencing the performance of photovoltaic panels[J]. Renewable and Sustainable Energy Reviews, 2017, 80: 1499-1511. [26] MAO M X, NI X Y. A comprehensive review of physical models and performance evaluations for pavement photovoltaic modules[J]. Energies, 2024, 17(11): 2561. [27] 裴婷婷, 郝晓弘. 局部阴影条件下光伏阵列的动态建模[J]. 太阳能学报, 2020, 41(2): 268-274.PEI Ting-ting, HAO Xiao-hong. Dynamic modeling of PV array under partial shading condition[J]. Acta Energiae Solaris Sinica, 2020, 41(2): 268-274. [28] BELHACHAT F, LARBES C. Modeling, analysis and comparison of solar photovoltaic array configurations under partial shading conditions[J]. Solar Energy, 2015, 120: 399-418. [29] MA T, LI S J, GU W B, et al. Solar energy harvesting pavements on the road: comparative study and performance assessment[J]. Sustainable Cities and Society, 2022, 81: 103868. [30] XIANG B, YUAN Y P, JI Y S, et al. Thermal and electrical performance of a novel photovoltaic-thermal road[J]. Solar Energy, 2020, 199: 1-18. [31] MEKKI H, MELLIT A, SALHI H. Artificial neural network-based modelling and fault detection of partial shaded photovoltaic modules[J]. Simulation Modelling Practice and Theory, 2016, 67: 1-13. [32] BINGÖL O, ÖZKAYA B. Analysis and comparison of different PV array configurations under partial shading conditions[J]. Solar Energy, 2018, 160: 336-343. [33] RAM J P, BABU T S, RAJASEKAR N. A comprehensive review on solar PV maximum power point tracking techniques[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 826-847. [34] 葛强, 李振志, 仇宝云, 等. 局部遮挡下光伏组件MPPT复合算法[J]. 江苏大学学报: 自然科学版, 2023, 44(5): 547-553.GE Qiang, LI Zhen-zhi, QIU Bao-yun, et al. MPPT composite algorithm of photovoltaic modules under partial occlusion condition[J]. Journal of Jiangsu University: Natural Science Edition, 2023, 44(5): 547-553. [35] 解宝, 李萍宇, 苏绎仁, 等. 局部阴影下光伏阵列的最大功率点跟踪算法研究[J]. 太阳能学报, 2023, 44(12): 47-52.XIE Bao, LI Ping-yu, SU Yi-ren, et al. Research on maximum power point tracking algorithm of PV array under local shadow[J]. Acta Energiae Solaris Sinica, 2023, 44(12): 47-52. [36] 李红岩, 王磊, 安平娟, 等. 基于改进黏菌算法的局部遮阴下光伏MPPT研究[J]. 太阳能学报, 2023, 44(10): 129-134.LI Hong-yan, WANG Lei, AN Ping-juan, et al. Study on photovoltaic MPPT under local shade based on improved slime mold algorithm[J]. Acta Energiae Solaris Sinica, 2023, 44(10): 129-134. [37] BARANWAL K, PRAKASH P, YADAV V K. Optimizing bypass diode performance with modified hotspot mitigation circuit[J]. Solar Energy Materials and Solar Cells, 2025, 280: 113281. [38] ZHOU T P, SUN W. Study on maximum power point tracking of photovoltaic array in irregular shadow[J]. International Journal of Electrical Power & Energy Systems, 2015, 66: 227-234. [39] MAO M X, CHEN S Y, YAN J Y. Modelling pavement photovoltaic arrays with cellular automata[J]. Applied Energy, 2023, 330: 120360. [40] 唐圣学, 乔乃珍, 冀勃睿, 等. 考虑阴影变化的太阳电池模型及动态参数分析[J]. 太阳能学报, 2023, 44(10): 113-119.TANG Sheng-xue, QIAO Nai-zhen, JI Bo-rui, et al. Modeling and dynamic parameter analysis of solar cell considering shadow change[J]. Acta Energiae Solaris Sinica, 2023, 44(10): 113-119. [41] GU W B, MA T, SHEN L, et al. Coupled electrical-thermal modelling of photovoltaic modules under dynamic conditions[J]. Energy, 2019, 188: 116043. [42] ZHANG Y J, MA T, YANG H X, et al. Simulation and experimental study on the energy performance of a pre-fabricated photovoltaic pavement[J]. Applied Energy, 2023, 342: 121122. [43] MA T, GU W B, SHEN L, et al. An improved and comprehensive mathematical model for solar photovoltaic modules under real operating conditions[J]. Solar Energy, 2019, 184: 292-304. [44] TIAN H M, MANCILLA-DAVID F, ELLIS K, et al. A cell-to-module-to-array detailed model for photovoltaic panels[J]. Solar Energy, 2012, 86(9): 2695-2706. [45] GU W B, MA T, LI M, et al. A coupled optical-electrical-thermal model of the bifacial photovoltaic module[J]. Applied Energy, 2020, 258: 114075. [46] 马铭遥, 王海松, 马文婷, 等. 基于S-V特性分析的晶硅光伏组件阴影遮挡故障诊断[J]. 太阳能学报, 2022, 43(9): 64-72.MA Ming-yao, WANG Hai-song, MA Wen-ting, et al. Partial shadow fault diagnosis of crystalline silicon photovoltaic module based on S-V characteristic analysis[J]. Acta Energiae Solaris Sinica, 2022, 43(9): 64-72. -
下载: