留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动态车辆阴影对公路光伏路面发电效率的影响

刘状壮 黄宇 程伟 马浩然 孙浩 沙爱民

刘状壮, 黄宇, 程伟, 马浩然, 孙浩, 沙爱民. 动态车辆阴影对公路光伏路面发电效率的影响[J]. 交通运输工程学报, 2025, 25(4): 28-41. doi: 10.19818/j.cnki.1671-1637.2025.04.002
引用本文: 刘状壮, 黄宇, 程伟, 马浩然, 孙浩, 沙爱民. 动态车辆阴影对公路光伏路面发电效率的影响[J]. 交通运输工程学报, 2025, 25(4): 28-41. doi: 10.19818/j.cnki.1671-1637.2025.04.002
LIU Zhuang-zhuang, HUANG Yu, CHENG Wei, MA Hao-ran, SUN Hao, SHA Ai-min. Influence of dynamic vehicle shadows on power generation efficiency of highway photovoltaic pavements[J]. Journal of Traffic and Transportation Engineering, 2025, 25(4): 28-41. doi: 10.19818/j.cnki.1671-1637.2025.04.002
Citation: LIU Zhuang-zhuang, HUANG Yu, CHENG Wei, MA Hao-ran, SUN Hao, SHA Ai-min. Influence of dynamic vehicle shadows on power generation efficiency of highway photovoltaic pavements[J]. Journal of Traffic and Transportation Engineering, 2025, 25(4): 28-41. doi: 10.19818/j.cnki.1671-1637.2025.04.002

动态车辆阴影对公路光伏路面发电效率的影响

doi: 10.19818/j.cnki.1671-1637.2025.04.002
基金项目: 

国家重点研发计划 2021YFB1600201

详细信息
    作者简介:

    刘状壮(1986-),男,江苏泗阳人,长安大学教授,工学博士,从事交通自洽能源系统理论与应用技术研究

    通讯作者:

    LIU Zhuang-zhuang (1986-), male, professor, PhD, zzliu@chd.edu.cn

  • 中图分类号: U417.9

Influence of dynamic vehicle shadows on power generation efficiency of highway photovoltaic pavements

Funds: 

National Key R&D Program of China 2021YFB1600201

Article Text (Baidu Translation)
  • 摘要: 为研究路面车辆阴影对公路光伏路面(HPVP)发电效率的影响,通过构造36.00 m×3.20 m的理想光伏路面模型(4×12阵列),建立了包含电池组件参数、路面参数、环境参数、车辆参数和交通参数的光伏路面发电模型;通过理论仿真,研究了太阳高度角、车辆构成、行驶速度、车流量等因素对HPVP发电效率的影响规律;通过搭建的HPVP测试平台,研究串联、并联光伏电池板组成的4×2光伏阵列阴影遮挡试验,验证光伏阵列模型和阴影遮挡模型的准确性。研究结果表明:在构造条件下,车辆行驶时的光伏路面输出功率呈现周期性波动;针对光伏路面发电效率,大型车造成的阴影遮挡不受太阳高度角影响,而小型车造成的阴影遮挡受太阳高度角影响明显;对小型车阴影遮挡影响,太阳高度角临界值为65°,当高度角大于65°时,光伏路面发电效率随着高度角的增大而增大,当高度角小于65°时,光伏路面输出功率不随高度角的变化而变化;行驶速度越快,动态阴影遮挡时间越短,光伏路面发电损失越小,当行驶速度超过70 km·h-1后,行驶速度增加对降低发电损失效果减缓;车流量增加会导致HPVP发电损失缓慢增加,且车流量对光伏路面发电效率的影响大于车辆行驶速度的影响;极限条件下,大型车和小型车对光伏路面造成的发电最大损失分别为26.82%和11.37%;通过验证试验发现,阴影的纵向遮挡和横向遮挡下光伏路面最大发电效率仿真值的一致性分别为98.63%和98.27%。

     

  • 图  1  光伏电池输出特性

    Figure  1.  Output characteristics of photovoltaic cells

    图  2  光伏阵列示意

    Figure  2.  Schematic of photovoltaic array

    图  3  光伏路面示意

    Figure  3.  Schematic of photovoltaic pavement

    图  4  阴影遮挡分类

    Figure  4.  Shadow occlusion classifies

    图  5  混合阴影遮挡分类

    Figure  5.  Mixed shadow occlusion classifies

    图  6  光伏阵列输出特性

    Figure  6.  Output characteristics of photovoltaic array

    图  7  车辆遮挡类型对光伏路面输出功率影响

    Figure  7.  Influence of vehicle occlusion type on photovoltaic road output power

    图  8  车辆遮挡类型对光伏路面发电量影响和发电损失

    Figure  8.  Influences of vehicle occlusion type on photovoltaic road power generation and power loss

    图  9  行驶速度对光伏路面输出功率影响

    Figure  9.  Influence of driving speed on photovoltaic road output power

    图  10  行驶速度对光伏路面发电量和发电损失影响

    Figure  10.  Influences of driving speed on photovoltaic road power generation and power loss

    图  11  车流量对光伏路面发电量和发电损失影响

    Figure  11.  Influences of traffic density on photovoltaic road power generation and power loss

    图  12  车辆构成对光伏路面发电量和发电损失影响

    Figure  12.  Influences of vehicle composition on photovoltaic pavement power generation and power loss

    图  13  测试装置

    Figure  13.  Testing device

    图  14  试验环境参数

    Figure  14.  Test environment parameters

    图  15  无阴影遮挡下光伏路面输出功率

    Figure  15.  Output power of photovoltaic pavement without shadow occlusion

    图  16  光伏阵列试验与仿真输出功率结果对比

    Figure  16.  Comparison of photovoltaic array test and simulation output power results

    表  1  车辆模型基本信息

    Table  1.   Basic information of vehicle model

    车辆类型 长度/m 宽度/m 高度/m 正午平均交通量/(veh·h-1) 阴影遮挡宽度/m 正下方遮挡面/m2
    大型车(30 t厢式货车) 12.5 2.4 2.7 20 2.4 30.0
    小型货车 4.8 1.8 1.5 82 1.8 8.6
    下载: 导出CSV

    表  2  车流量与行驶速度影响对比

    Table  2.   Influence comparison of traffic flow and driving speed

    行驶速度/(km·h-1) 车流量/(veh·h-1)
    300 600 900 1200
    60 + + + +
    70 + + + +
    80 + + + +
    90 + + + 0
    100 + + + -
    110 + + + -
    120 + + + -
    下载: 导出CSV
  • [1] LI S, MA T, WANG D. Photovoltaic pavement and solar road: a review and perspectives[J]. Sustainable Energy Technologies and Assessments, 2023, 55: 102933.
    [2] HU H W, VIZZARI D, ZHA X D, et al. Solar pavements: a critical review[J]. Renewable and Sustainable Energy Reviews, 2021, 152: 111712.
    [3] 王海成, 金娇, 刘帅, 等. 环境友好型绿色道路研究进展与展望[J]. 中南大学学报(自然科学版), 2021, 52(7): 2137-2169.

    WANG Hai-cheng, JIN Jiao, LIU Shuai, et al. Research progress and prospect of environment-friendly green road[J]. Journal of Central South University (Science and Technology), 2021, 52(7): 2137-2169.
    [4] 张宇飞, 蒋玮, 张硕, 等. 面向交通与能源融合需求的高速公路设施用能负荷预测[J]. 交通运输工程学报, 2024, 24(5): 40-53. doi: 10.19818/j.cnki.1671-1637.2024.05.004

    ZHANG Yu-fei, JIANG Wei, ZHANG Shuo, WANG Teng, XIAO Jing-jing, YUAN Dong-dong. Energy load forecasting of highway facilities in response to integration transportation and energy needs[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 40-53. doi: 10.19818/j.cnki.1671-1637.2024.05.004
    [5] 刘状壮, 黎耀诚, 王峰, 等. 公路路侧光伏的边坡效应及其风荷载计算方法[J]. 交通运输工程学报, 2024, 24(5): 1-11. doi: 10.19818/j.cnki.1671-1637.2024.05.001

    LIU Zhuang-zhuang, LI Yao-cheng, WANG Feng, SHA Ai-min. Slope effects on highway-side photovoltaics and its wind load calculation method[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 1-11. doi: 10.19818/j.cnki.1671-1637.2024.05.001
    [6] HU M, SONG X, BAO Z, et al. Evaluation of the economic potential of photovoltaic power generation in road spaces[J]. Energies, 2022, 15(17): 6408.
    [7] 胡恒武, 查旭东, 吕瑞东, 等. 基于光伏发电的道路能量收集技术研究进展[J]. 材料导报, 2022, 36(20): 133-144.

    HU Heng-wu, ZHA Xu-dong, LYU Rui-dong, et al. Recent advances of energy harvesting technologies in road based on photovoltaic power generation[J]. Materials Reports, 2022, 36(20): 133-144
    [8] JIANG W, WANG T, YUAN D D, et al. Available solar resources and photovoltaic system planning strategy for highway[J]. Renewable and Sustainable Energy Reviews, 2024, 203: 114765.
    [9] ZHOU B C, PEI J Z, NASIR D M, et al. A review on solar pavement and photovoltaic/thermal (PV/T) system[J]. Transportation Research Part D: Transport and Environment, 2021, 93: 102753.
    [10] DEZFOOLI A S, NEJAD F M, ZAKERI H, et al. Solar pavement: a new emerging technology[J]. Solar Energy, 2017, 149: 272-284.
    [11] RAHMAN M, MABROUK G, DESSOUKY S. Development of a photovoltaic-based module for harvesting solar energy from pavement: a lab and field assessment[J]. Energies, 2023, 16(8): 3338.
    [12] 王飚, 路捷, 沙爱民, 等. 考虑光伏不确定性影响的高速公路光储换一体化能源管理策略[J]. 交通运输工程学报, 2024, 24(4): 14-30.

    WANG Biao, LU Jie, SHA Ai-min, JIANG Wei, LIU Zhuang-zhuang, KE Ji. Energy management strategy of integrated photovoltaic-storage-swapping on highways considering influence of photovoltaic uncertainty[J]. Journal of Traffic and Transportation Engineering, 2024, 24(4): 14-30.
    [13] LV R D, ZHA X D, HU H W, et al. A review on the influencing factors of solar pavement power generation efficiency[J]. Applied Energy, 2025, 379: 124897.
    [14] ZHOU B C, PEI J Z, CALAUTIT J K, et al. Analysis of mechanical response and energy efficiency of a pavement integrated photovoltaic/thermal system (PIPVT)[J]. Renewable Energy, 2022, 194: 1-12.
    [15] TAHA H. The potential for air-temperature impact from large-scale deployment of solar photovoltaic arrays in urban areas[J]. Solar Energy, 2013, 91: 358-367.
    [16] EFTHYMIOU C, SANTAMOURIS M, KOLOKOTSA D, et al. Development and testing of photovoltaic pavement for heat island mitigation[J]. Solar Energy, 2016, 130: 148-160.
    [17] XIE P Y, WANG H. Potential benefit of photovoltaic pavement for mitigation of urban heat island effect[J]. Applied Thermal Engineering, 2021, 191: 116883.
    [18] DEL SERRONE G, PELUSO P, MORETTI L. Photovoltaic road pavements as a strategy for low-carbon urban infrastructures[J]. Heliyon, 2023, 9(9): e19977.
    [19] ZHA X D, QIU M X, HU H W, et al. Simulation of structure and power generation for self-compacting concrete hollow slab solar pavement with micro photovoltaic array[J]. Sustainable Energy Technologies and Assessments, 2022, 53: 102798.
    [20] 韩振强, 兰晨睿, 胡力群, 等. 公路路域太阳能资源开发潜力分层评估方法[J]. 长安大学学报(自然科学版), 2024, 44(5): 57-70.

    HAN Zhen-qiang, LAN Chen-rui, HU Li-qun, et al. Analytic hierarchy process evaluation method of development potential of solar energy resources in highway areas[J]. Journal of Chang'an University (Natural Science Edition), 2024, 44(5): 57-70.
    [21] ZHOU B C, PEI J Z, HUGHES B R, et al. Analysis of mechanical properties for two different structures of photovoltaic pavement unit block[J]. Construction and Building Materials, 2020, 239: 117864.
    [22] ZHOU B C, PEI J Z, ZHANG J P, et al. Joint design and load transfer capacity analysis of photovoltaic/thermal integrated pavement unit[J]. Journal of Cleaner Production, 2022, 380: 135029.
    [23] VIZZARI D, CHAILLEUX E, LAVAUD S, et al. Fraction factorial design of a novel semi-transparent layer for applications on solar roads[J]. Infrastructures, 2020, 5(1): 5.
    [24] HU H W, ZHA X D, NIU C, et al. Structural optimization and performance testing of concentrated photovoltaic panels for pavement[J]. Applied Energy, 2024, 356: 122362.
    [25] FOUAD M M, SHIHATA L A, MORGAN E I. An integrated review of factors influencing the performance of photovoltaic panels[J]. Renewable and Sustainable Energy Reviews, 2017, 80: 1499-1511.
    [26] MAO M X, NI X Y. A comprehensive review of physical models and performance evaluations for pavement photovoltaic modules[J]. Energies, 2024, 17(11): 2561.
    [27] 裴婷婷, 郝晓弘. 局部阴影条件下光伏阵列的动态建模[J]. 太阳能学报, 2020, 41(2): 268-274.

    PEI Ting-ting, HAO Xiao-hong. Dynamic modeling of PV array under partial shading condition[J]. Acta Energiae Solaris Sinica, 2020, 41(2): 268-274.
    [28] BELHACHAT F, LARBES C. Modeling, analysis and comparison of solar photovoltaic array configurations under partial shading conditions[J]. Solar Energy, 2015, 120: 399-418.
    [29] MA T, LI S J, GU W B, et al. Solar energy harvesting pavements on the road: comparative study and performance assessment[J]. Sustainable Cities and Society, 2022, 81: 103868.
    [30] XIANG B, YUAN Y P, JI Y S, et al. Thermal and electrical performance of a novel photovoltaic-thermal road[J]. Solar Energy, 2020, 199: 1-18.
    [31] MEKKI H, MELLIT A, SALHI H. Artificial neural network-based modelling and fault detection of partial shaded photovoltaic modules[J]. Simulation Modelling Practice and Theory, 2016, 67: 1-13.
    [32] BINGÖL O, ÖZKAYA B. Analysis and comparison of different PV array configurations under partial shading conditions[J]. Solar Energy, 2018, 160: 336-343.
    [33] RAM J P, BABU T S, RAJASEKAR N. A comprehensive review on solar PV maximum power point tracking techniques[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 826-847.
    [34] 葛强, 李振志, 仇宝云, 等. 局部遮挡下光伏组件MPPT复合算法[J]. 江苏大学学报: 自然科学版, 2023, 44(5): 547-553.

    GE Qiang, LI Zhen-zhi, QIU Bao-yun, et al. MPPT composite algorithm of photovoltaic modules under partial occlusion condition[J]. Journal of Jiangsu University: Natural Science Edition, 2023, 44(5): 547-553.
    [35] 解宝, 李萍宇, 苏绎仁, 等. 局部阴影下光伏阵列的最大功率点跟踪算法研究[J]. 太阳能学报, 2023, 44(12): 47-52.

    XIE Bao, LI Ping-yu, SU Yi-ren, et al. Research on maximum power point tracking algorithm of PV array under local shadow[J]. Acta Energiae Solaris Sinica, 2023, 44(12): 47-52.
    [36] 李红岩, 王磊, 安平娟, 等. 基于改进黏菌算法的局部遮阴下光伏MPPT研究[J]. 太阳能学报, 2023, 44(10): 129-134.

    LI Hong-yan, WANG Lei, AN Ping-juan, et al. Study on photovoltaic MPPT under local shade based on improved slime mold algorithm[J]. Acta Energiae Solaris Sinica, 2023, 44(10): 129-134.
    [37] BARANWAL K, PRAKASH P, YADAV V K. Optimizing bypass diode performance with modified hotspot mitigation circuit[J]. Solar Energy Materials and Solar Cells, 2025, 280: 113281.
    [38] ZHOU T P, SUN W. Study on maximum power point tracking of photovoltaic array in irregular shadow[J]. International Journal of Electrical Power & Energy Systems, 2015, 66: 227-234.
    [39] MAO M X, CHEN S Y, YAN J Y. Modelling pavement photovoltaic arrays with cellular automata[J]. Applied Energy, 2023, 330: 120360.
    [40] 唐圣学, 乔乃珍, 冀勃睿, 等. 考虑阴影变化的太阳电池模型及动态参数分析[J]. 太阳能学报, 2023, 44(10): 113-119.

    TANG Sheng-xue, QIAO Nai-zhen, JI Bo-rui, et al. Modeling and dynamic parameter analysis of solar cell considering shadow change[J]. Acta Energiae Solaris Sinica, 2023, 44(10): 113-119.
    [41] GU W B, MA T, SHEN L, et al. Coupled electrical-thermal modelling of photovoltaic modules under dynamic conditions[J]. Energy, 2019, 188: 116043.
    [42] ZHANG Y J, MA T, YANG H X, et al. Simulation and experimental study on the energy performance of a pre-fabricated photovoltaic pavement[J]. Applied Energy, 2023, 342: 121122.
    [43] MA T, GU W B, SHEN L, et al. An improved and comprehensive mathematical model for solar photovoltaic modules under real operating conditions[J]. Solar Energy, 2019, 184: 292-304.
    [44] TIAN H M, MANCILLA-DAVID F, ELLIS K, et al. A cell-to-module-to-array detailed model for photovoltaic panels[J]. Solar Energy, 2012, 86(9): 2695-2706.
    [45] GU W B, MA T, LI M, et al. A coupled optical-electrical-thermal model of the bifacial photovoltaic module[J]. Applied Energy, 2020, 258: 114075.
    [46] 马铭遥, 王海松, 马文婷, 等. 基于S-V特性分析的晶硅光伏组件阴影遮挡故障诊断[J]. 太阳能学报, 2022, 43(9): 64-72.

    MA Ming-yao, WANG Hai-song, MA Wen-ting, et al. Partial shadow fault diagnosis of crystalline silicon photovoltaic module based on S-V characteristic analysis[J]. Acta Energiae Solaris Sinica, 2022, 43(9): 64-72.
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  344
  • HTML全文浏览量:  180
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-23
  • 录用日期:  2025-06-06
  • 修回日期:  2025-05-07
  • 刊出日期:  2025-08-28

目录

    /

    返回文章
    返回