Mechanical response of tunnel structure to hole-breaking process of cross passage pipe jacking construction
-
摘要: 为探究顶管始发破洞过程对主隧道结构力学响应的影响机制,以郑州地铁12号线联络通道施工项目为背景,建立了联络通道顶管法施工三维仿真模型,通过与现场监测数据对比验证了所建模型的准确性;研究了顶管始发破洞施工对主隧道管片变形、内力及螺栓受力的影响,系统分析了主隧道结构在破洞施工过程中的力学响应演变规律。研究结果表明:破洞施工对管片环向扰动影响显著大于纵向,其扰动范围约为洞口两侧2倍主隧道直径;半切削环90°位置受破洞施工影响最为显著,并在其外弧面形成了明显的拉应力带,最大拉应力达到9 MPa,但该处的钢混复合管片结构能保障其安全;内支撑体系可为主隧道分担外部水土压力,有效减小管片内力及变形;随着管片切削厚度增加,衬砌环横椭圆变形逐渐增大,螺栓应力也随之增加,环向螺栓应力显著高于纵向螺栓,并接近于屈服强度;洞口上下端的内力骤减,产生了明显的悬臂效应,其损失的荷载通过纵向螺栓向受损较小的邻近环转移,导致半切削环90°位置的内力明显增加,且内力重分布主要发生在切削3/4管片厚度阶段。研究结果为揭示联络通道顶管法施工对主隧道结构力学响应的影响机理提供了重要依据,并为今后同类工程的设计与施工提供了理论参考。Abstract: To investigate the influence mechanism of the hole-breaking process at the launching stage of pipe jacking on the mechanical response of the main tunnel structure, a three-dimensional simulation model for pipe jacking construction of the cross passage was established based on the construction project of the cross passage in Zhengzhou Metro Line 12. The accuracy of the established model was verified by comparison with field monitoring data. The effects of the hole-breaking construction during the launching stage of pipe jacking on the deformation of the main tunnel segments, internal forces, and bolt stress were studied. The evolution of the mechanical response of the main tunnel structure during the hole-breaking construction process was systematically analyzed. Research results show that the hole-breaking construction causes significantly greater disturbance in the circumferential direction of the segments than in the longitudinal direction, and the disturbance range extends approximately twice the diameter of the main tunnel on both sides of the opening. The 90° position of the semi-cutting ring is most affected by the hole-breaking construction. A distinct tensile stress zone is formed on its outer arc surface, with a maximum tensile stress of 9 MPa. The steel-concrete composite segment at this location ensures structural safety. The internal support system reduces the external soil and water pressure on the main tunnel, effectively lowering internal forces and deformation of the segments. As the segment cutting thickness increases, the transverse elliptical deformation of the lining ring gradually increases, and the bolt stress increases. Circumferential bolt stress is significantly higher than longitudinal bolt stress and approaches the yield strength. Internal forces at the upper and lower ends of the opening dramatically decrease, creating a pronounced cantilever effect. The lost load is transferred to less damaged adjacent ring through longitudinal bolts, leading to a significant increase in internal forces at the 90° position of the semi-cutting ring. This redistribution of internal force mainly occurs during the stage of cutting 3/4 of the segment thickness. The results provide important evidence for revealing the influence mechanism of the hole-breaking process in cross passage pipe jacking construction on the mechanical response of the main tunnel structure. The results also offer theoretical reference for the design and construction of similar projects in the future.
-
Key words:
- tunnel engineering /
- mechanical response /
- simulation model /
- main tunnel /
- cross passage /
- hole-breaking process
-
表 1 各土层力学参数
Table 1. Mechanical parameters of each soil layer
土层名称 厚度/m 重度/(kN·m-3) 黏聚力/kPa 内摩擦角/(°) 压缩模量/MPa 泊松比 A①1杂填土 0.8 18.0 11.2 16.5 8.0 0.35 A①2素填土 1.4 18.5 12.8 18.2 8.2 0.36 A②31黏质粉土 2.8 19.1 12.1 22.3 9.0 0.35 A②51细砂 6.0 19.5 1.0 30.0 15.0 0.36 A②52细砂 30.0 19.8 2.0 32.0 20.0 0.36 表 2 结构材料物理参数
Table 2. Physical parameters of structural materials
结构名称 弹性模量/GPa 重度/(kN·m-3) 泊松比 C50混凝土管片 34.5 25.0 0.20 钢混复合管片 60.0 35.0 0.22 玻璃纤维筋混凝土管片 31.5 25.0 0.20 内支撑体系、螺栓 206.0 78.5 0.25 -
[1] 秦博宇, 龚丹丹, 陈志龙. 中国城市地下空间开发利用助力低碳发展现状、策略与构想[J]. 隧道建设(中英文), 2024, 44(7): 1337-1355.QIN Bo-yu, GONG Dan-dan, CHEN Zhi-long. Current si-tuation, strategy, and conception for exploiting and using urban underground spaces for low-carbon development in China[J]. Tunnel Construction, 2024, 44(7): 1337-1355. [2] QIAO Y K, PENG F L, LUAN Y P, et al. Rethinking underground land value and pricing: a sustainability perspec-tive[J]. Tunnelling and Underground Space Technology, 2022, 127: 104573. doi: 10.1016/j.tust.2022.104573 [3] 徐雅洁, 陈湘生. 地铁域地下空间综合开发研究现状与展望[J]. 地下空间与工程学报, 2023, 19(1): 1-12, 21.XU Ya-jie, CHEN Xiang-sheng. Current situation and pro-spect of comprehensive development of underground space in metro area[J]. Chinese Journal of Underground Space and Engineering, 2023, 19(1): 1-12, 21. [4] 李孟凯, 蔡海兵, 洪荣宝, 等. 平面斜交联络通道冻结温度场分析及工程应用研究[J]. 铁道科学与工程学报, 2022, 19(5): 1374-1384.LI Meng-kai, CAI Hai-bing, HONG Rong-bao, et al. Analy-sis and engineering application of freezing temperature field in planar skew connecting passage[J]. Journal of Railway Scien-ce and Engineering, 2022, 19(5): 1374-1384. [5] 刘欣, 冯利华, 任全军, 等. 渗流地层地铁联络通道冻结壁形成过程及其影响因素分析[J]. 中南大学学报(自然科学版), 2024, 55(4): 1463-1476.LIU Xin, FENG Li-hua, REN Quan-jun, et al. Formation process of freezing wall of subway cross passage in seepage stratum and analysis of its influencing factors[J]. Journal of Central South University (Science and Technology), 2024, 55(4): 1463-1476. [6] LI Z M, CHEN J, SUGIMOTO M, et al. Numerical simu-lation model of artificial ground freezing for tunneling under seepage flow conditions[J]. Tunnelling and Underground Space Technology, 2019, 92: 103035. doi: 10.1016/j.tust.2019.103035 [7] 陈冠任, 李栋伟, 陈军浩, 等. 富水地层地铁超长联络通道冻结位移场演化规律研究[J]. 铁道科学与工程学报, 2023, 20(8): 3000-3013.CHEN Guan-ren, LI Dong-wei, CHEN Jun-hao, et al. Evo-lution law of freezing displacement field in ultra-long con-nected aisle in water-rich stratum[J]. Journal of Railway Sci-ence and Engineering, 2023, 20(8): 3000-3013. [8] ZHOU J, ZHAO W Q, TANG Y Q. Practical prediction method on frost heave of soft clay in artificial ground freezing with field experiment[J]. Tunnelling and Underground Space Technology, 2021, 107: 103647. doi: 10.1016/j.tust.2020.103647 [9] 黄大维, 陈后宏, 徐长节, 等. 联络通道施工盾构机接收对已建盾构隧道影响试验研究[J]. 岩土工程学报, 2024, 46(4): 784-793.HUANG Da-wei, CHEN Hou-hong, XU Chang-jie, et al. Experimental study on influences of shield machine reception on existing shield tunnels during construction of connecting channels[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 784-793. [10] LI X L, LI P C, LIU X F, et al. Surface subsidence pattern of construction of pipe jacking in water-rich sand layer cross passage measured and numerical simulation analysis[J]. Structures, 2024, 60: 105949. doi: 10.1016/j.istruc.2024.105949 [11] 陈湘生, 丁航, 李方政, 等. 地铁双线隧道下穿既有车站冻结加固冻胀控制措施[J]. 煤炭学报, 2024, 49(1): 172-180.CHEN Xiang-sheng, DING Hang, LI Fang-zheng, et al. Frost heave control measures for the frozen double-line tunnel undercrossing an operation station[J]. Journal of China Coal Society, 2024, 49(1): 172-180. [12] 伍毅敏, 刘延安, 王恒, 等. 北京市隧道下穿施工引起城市路面沉降的影响规律回归分析[J]. 交通运输工程学报, 2022, 22(2): 176-186. doi: 10.19818/j.cnki.1671-1637.2022.02.013WU Yi-min, LIU Yan-an, WANG Heng, et al. Regression analysis of influence law of urban pavement settlement caused by underpass tunnel construction in Beijing[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 176-186. doi: 10.19818/j.cnki.1671-1637.2022.02.013 [13] 丁剑敏, 董子博, 莫振泽, 等. 顶管法T接隧道现场试验研究分析[J]. 隧道建设(中英文), 2020, 40(1): 28-34.DING Jian-min, DONG Zi-bo, MO Zhen-ze, et al. Field ex-perimental study on T-connected tunnel with pipe jacking method[J]. Tunnel Construction, 2020, 40(1): 28-34. [14] 张付林, 刘正好, 朱瑶宏, 等. 机械法联络通道T接部位受力特性及弱化分析[J]. 岩土工程学报, 2022, 44(增2): 116-119.ZHANG Fu-lin, LIU Zheng-hao, ZHU Yao-hong, et al. Stress characteristics and weakening analysis of T-joint of connection passage by mechanical excavation method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 116-119. [15] 管攀峰, 郭振坤, 伍鹏李, 等. 基于壳-接触模型的盾构隧道开口力学分析[J]. 现代隧道技术, 2020, 57(5): 143-153.GUAN Pan-feng, GUO Zhen-kun, WU Peng-li, et al. Ana-lysis of mechanical behavior of shield tunnel openings based on shell-contact model[J]. Modern Tunnelling Technology, 2020, 57(5): 143-153. [16] 邱居涛, 申玉生, 赵何霖, 等. 城市深埋黏土隧道变形破坏机制试验研究[J]. 岩石力学与工程学报, 2023, 42(11): 2765-2775.QIU Ju-tao, SHEN Yu-sheng, ZHAO He-lin, et al. Experi-mental research on deformation and failure mechanism of deep-buried clay tunnels in urban areas[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(11): 2765-2775. [17] 陈帆, 王迎超, 郑顺华. 地铁隧道涌水涌砂诱发地面塌陷的大型模型试验研究[J]. 土木工程学报, 2023, 56(11): 174-183.CHEN Fan, WANG Ying-chao, ZHENG Shun-hua. Large-scale model experiment of ground collapse induced by water and sand gushing in subway tunnels[J]. China Civil Engi-neering Journal, 2023, 56(11): 174-183. [18] 高晓静, 李鹏飞, 张明聚, 等. 局部失效盾构隧道管片承载特性及破坏机理[J]. 中国公路学报, 2023, 36(11): 302-311.GAO Xiao-jing, LI Peng-fei, ZHANG Ming-ju, et al. Bear-ing characteristics and failure mechanism of partially failed segments in shield tunnels[J]. China Journal of Highway and Transport, 2023, 36(11): 302-311. [19] 柳献, 张雨蒙, 王如路. 地铁盾构隧道衬砌结构变形及破坏探讨[J]. 土木工程学报, 2020, 53(5): 118-128.LIU Xian, ZHANG Yu-meng, WANG Ru-lu. Discussion on deformation and failure of segmental metro tunnel linings[J]. China Civil Engineering Journal, 2020, 53(5): 118-128. [20] TAN Z S, LI Z L, TANG W, et al. Research on stress cha-racteristics of segment structure during the construction of the large-diameter shield tunnel and cross-passage[J]. Sym-metry, 2020, 12(8): 1246. [21] 汪亦显, 单生彪, 袁海平, 等. 盾构隧道衬砌管片接头张合状态力学模型及数值模拟[J]. 建筑结构学报, 2017, 38(5): 158-166.WANG Yi-xian, SHAN Sheng-biao, YUAN Hai-ping, et al. Mechanical model and numerical simulation for patulous-occlusive situation of joint of shield tunnel lining segment[J]. Journal of Building Structures, 2017, 38(5): 158-166. [22] LIN Q T, LU D C, LEI C M, et al. Mechanical response of existing tunnels for shield under-crossing in cobble strata based on the model test[J]. Tunnelling and Underground Space Technology, 2022, 125: 104505. [23] 朱瑶宏, 高一民, 董子博, 等. 顶管法T接隧道结构受力足尺试验研究[J]. 隧道建设(中英文), 2019, 39(9): 1392-1401.ZHU Yao-hong, GAO Yi-min, DONG Zi-bo, et al. Full-scale experimental study on structural mechanism of T-con-nected tunnel constructed by pipe jacking method[J]. Tunnel Construction, 2019, 39(9): 1392-1401. [24] 朱瑶宏, 高一民, 董子博, 等. 盾构法T接隧道结构受力足尺试验研究[J]. 隧道建设(中英文), 2020, 40(1): 9-18.ZHU Yao-hong, GAO Yi-min, DONG Zi-bo, et al. Full-sca-le experimental study on structural mechanism of T-connected tunnel constructed by shield method[J]. Tunnel Construc-tion, 2020, 40(1): 9-18. [25] 朱瑶宏, 高一民, 柳献. 深埋机械法联络通道主隧道结构响应研究[J]. 现代隧道技术, 2022, 59(5): 144-153.ZHU Yao-hong, GAO Yi-min, LIU Xian. Study on the structural response of the main tunnel with deep cross pass-ages built by the mechanical method[J]. Modern Tunnelling Technology, 2022, 59(5): 144-153. [26] 柳献, 高一民, 张姣龙, 等. 机械法联络通道施工中主隧道的破洞响应分析[J]. 岩土工程学报, 2020, 42(5): 951-960.LIU Xian, GAO Yi-min, ZHANG Jiao-long, et al. Structu-ral response of main tunnel linings during construction of connecting aisle by means of mechanized drilling[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 951-960. [27] LU P, YUAN D J, JIN D L, et al. Centrifugal model tests on the structural response of the shield tunnel when con-structing cross passages by mechanical methods[J]. Tunnell-ing and Underground Space Technology, 2022, 128: 104621. [28] 朱瑶宏, 高一民, 董子博, 等. 盾构法T接隧道结构受力现场试验研究——以宁波轨道交通3号线联络通道为例[J]. 隧道建设(中英文), 2019, 39(11): 1759-1768.ZHU Yao-hong, GAO Yi-min, DONG Zi-bo, et al. Field te-st on structural mechanism of T-connected shield tunnel: a case study of connecting passage on Ningbo metro line No. 3[J]. Tunnel Construction, 2019, 39(11): 1759-1768. [29] 黄毅, 刘正好, 马险峰, 等. 机械法联络通道管片切削试验与数值模拟研究[J]. 隧道建设(中英文), 2022, 42(增1): 93-103.HUANG Yi, LIU Zheng-hao, MA Xian-feng, et al. Resear-ch on cutting test and numerical simulation of segments used in connection passage with mechanical excavation method[J]. Tunnel Construction, 2022, 42(S1): 93-103. [30] 王儒, 翟五洲, 倪海波, 等. 盾构隧道机械法联络通道破洞施工中管片衬砌洞门结构力学响应的数值模拟研究[J]. 隧道建设(中英文), 2023, 43(增1): 178-188.WANG Ru, ZHAI Wu-zhou, NI Hai-bo, et al. Numerical si-mulation on mechanical response of tunnel portal with seg-ment lining in mechanized construction of cross passage of shield tunnel[J]. Tunnel Construction, 2023, 43(S1): 178-188. [31] 郑镇跡, 黄书华, 陈湘生, 等. 超大直径盾构主隧道机械法联络通道特殊衬砌管片受力特性分析[J]. 现代隧道技术, 2024, 61(1): 117-124.ZHENG Zhen-ji, HUANG Shu-hua, CHEN Xiang-sheng, et al. Analysis of stress characteristics of specially lined seg-ment of superlarge-diameter shield main tunnel during mecha-nically excavating cross passage[J]. Modern Tunnelling Te-chnology, 2024, 61(1): 117-124. [32] 施成华, 王祖贤, 刘建文, 等. 基于混凝土损伤模型的盾构隧道极限承载力研究[J]. 中南大学学报(自然科学版), 2022, 53(11): 4310-4325.SHI Cheng-hua, WANG Zu-xian, LIU Jian-wen, et al. Stu-dy on ultimate bearing capacity of shield tunnel based on da-mage model of concrete[J]. Journal of Central South Univer-sity (Science and Technology), 2022, 53(11): 4310-4325. [33] 亚斌, 周秉文, 黄炳坤, 等. 碳纳米管聚合物复合材料弹性模量预测模型研究进展[J]. 功能材料, 2015, 46(11): 11001-11005.YA Bin, ZHOU Bing-wen, HUANG Bing-kun, et al. The research progress in predicting the elastic modulus of carbon nanotubes reinforced polymer composites[J]. Journal of Functional Materials, 2015, 46(11): 11001-11005. -
下载: